

OpenUEBA - An open source framework for User and Entity Behaviour Analytics

TNC 22 Trieste, Italy 14th June 2022

Albert Calvo (<u>albert.calvo@i2cat.net</u> - /in/albertcalvo/) Nil Ortiz - (<u>nil.ortiz@i2cat.net</u> - /in/nilortiz/) Never stop designing the digital future i2CAT.net **y** in **D**

The <u>i2CAT Foundation</u> is a non-profit research and innovation center that promotes <u>mission-</u> <u>driven R&D activities</u> in advanced digital technologies.

The center has more than 15 years of experience pursuing international and local R&D projects in the fields of 5G, IoT, VR and Immersive Technologies, Cybersecurity, Blockchain, AI and Digital Social Innovation.

Activities

Research & Innovation, playing a key role in the EU Framework Program for Research and Innovation, as well as in Catalan and Spanish calls.

Cooperation with private companies,

working to translate the outcomes and knowledge generated as a result of research activities into productive sectors of the local and international economy.

Collaboration with Public

<u>Administrations</u>, playing a fundamental role in the definition and deployment of digital public policies throughout the country.

Technology Transfer, boosting collaborations with the innovation ecosystem players through strategic alliances to create innovative marketoriented technologies and solutions.

3

Challenges in Advanced Digital Technologies - TDA

- Mission-driven project founded by the Generalitat of Catalonia
- Capital Seed to Deep Tech Projects

Introduction

Calculate the user and entity exposure analysis against specific threats through the power of CTI and AI working together

Learning the behaviour of users is more resilient to changes than analysing atomic indicators or observables

- Determining which users are more susceptible of being cyber threats victims
- Adopting users protection actions
- Reduce attack surface and anticipation capabilities

Our Novelty					
Multimodal Data	OSINT alignment	Real-world validation			
The proposed framework exploits several heterogeneous data sources allowing to build rich entity profiles.	Open-source intelligence sources (OSINT) to enhance the profiles and allow the risk calculation of incoming threats.	The framework is designed under a data-driven project and validated under two real-life test-bed.			

Open UEBA Framework

The AI behind openUEBA

The foundations of **Behaviour analytics** rely on psychology, marketing and biology studies where it is modelled the behaviour to understand interactions to achieve objectives.

How machine learning could be used to detect potential threats analysing their behaviour?

OpenUEBA learns the behaviour of entities and map to threats, allowing to predict the exposure and risk degree of a user towards a specific threat.

Al-based model

The following sources are considered:

- Network data: information captured with an on-premises hardware sensor in form of bro logs
- Endpoint data: endpoint information captured with an agent (similar to osquery)
- Application data: application logs or forwarded from a SIEM as a proxy
- Threat Intelligence (enrich sources) MISP queries

Event sequences representing entity behaviour at a current timestamp are built :

@timestamp, entity-ID,

i2cat¹ protocols used, dns activity, tiny _url activy, ...]

Peer Behavioral Modelling

We extract from all the entities, historical incidents and simulated attacks to tag entities and correlate them to specific threat information

Log Sources	OSINT				
Event Seq Builder	Threat Builder Threat Activity Identification				
	<u> </u>				
Peer Behaviora	Peer Behavioral Modelling				
↓					
Historical Behavioral Modelling					
Exposition Analysis					
	OpenUEBA				

Al-based model

Historical Behavioral Modelling

It is train a classification model allowing to find behavioral patterns characterising specific threats.

Exposition Analysis

The Machine Learning model allows to predict the risk exposition to other entities

14

Threat Intelligence Platform

CTI Flow Schema

Threat Profiling process of extracting knowledge from Threat Intelligence sources and structure it as an indicators sequence.

17

Use cases

Use cases

UC Phishing: Campaign model

User activity	User identity	Threat intelligence	Historical incidents
Historical activity	Characteristics	loCs	loCs
Peer activity	Applications	TTPs	Response & Recovery
Anomalous activity	Devices	Mutations	Gained knowledge

UC Phishing: Campaign indicators

User behaviour	User identity	Threat behaviour	Historical incidents
DNS_pro_tcp	Department	privilege_escalation	affected_users
HTTP_reqlen	Role	lateral_movement	impact
Conn_unseen	VIP	C2_connection	mitigation_actions
SSL_ver_20	last_pwd_reset	registry_activity	recovery_actions

Demonstrators

Demonstrators

Current testbeds

- Universitat de Lleida
 - Phishing Use Case i2CAT env

Validation

Early UI

i2cat[®]

Conclusions and getting involved

Conclusions

- OpenUEBA aims to disrupt current SOC capabilities with predictive capabilities.
- Getting involved into openUEBA community!
 - Let's connect to growth the project
 - Collaboration (PoC with us)

SIEVA (INNOVATION PROGRAM)

or simply share ...

27

Stay tuned !

Linkedin group

Acknowledgements:

