PRIVACY-FRIENDLY LOGGING FOR SECURITY

Joeri de Ruiter
How it started

- Ransomware attack at Dutch university
- SURFcert identified domain names that could indicate infection
- Domain names shared with other organisations
- SURF asked which systems looked these up
- At SURF this was not logged
- How can we see what systems requested a specific domain name?
Why do we want this?

- Early detection of infected systems
 - Malware often requests specific domain names
 - For example to connect with command & control servers
- Real-time alerting
 - Known malicious domain names
- Look back
 - For newly identified malicious domain names
DNS intro

- Phonebook of the Internet
- Translation from domain names to IP addresses
DNS intro

- Phonebook of the Internet
- Translation from domain names to IP addresses
DNS intro

- Phonebook of the Internet
- Translation from domain names to IP addresses

Where is surf.nl?

DNS Resolver
DNS intro

- Phonebook of the Internet
- Translation from domain names to IP addresses
Who requested a particular domain name?

- Logging queries at the DNS resolver
- Very useful to find possibly compromised systems
 - Domain names not always immediately known
- However: very privacy sensitive
 - It reveals the users’ browsing behaviour
- How can we log and monitor DNS queries in a privacy-friendly manner?

Where is surf.nl?

What data are we interested in?

- Requested domain name
- Time of request
- Information to find the user, such as the IP address
- Easy solution: put it all in a database
 - Not very privacy-friendly
 - Can we do better?
What do we need?

- Privacy-by-design
- The only question we are interested in is:
 - Which users requested a particular (malicious) domain name?
- We are not interested in knowing which domain names a particular user requested
- Both questions require the same data: domain name and user info
- Can we design a system in which we can answer the first question, but not the second?
Intermezzo: cryptographic hash functions

- Transform some text into a random looking string of characters
 - Always the same string for the same input
 - Outputs of the same length
 - One-way: you cannot easily get the original input given just an output
Intermezzo: cryptographic hash functions

surf.nl

51EF8FD9D7B9996C89DB2F0AD3F91C50
Intermezzo: cryptographic hash functions

surf.nl

51EF8FD9D7B9996C89DB2F0AD3F91C50

surf domeinen.nl

CEAC9BF76D801DAB8F5C9889472DF84A
Intermezzo: cryptographic hash functions

surf.nl
51EF8FD9D7B9996C89DB2F0AD3F91C50

surfdomeinen.nl
CEAC9BF76D801DAB8F5C9889472DF84A

F20404BDD1003CDF110C929F8C238C98

?
Privacy-friendly storage

- Store the hash of the requested domain name
 - Possible to search for specific domain names
 - Not possible to see which domain names a particular user requested
 - Additional layer of security by protecting the hashes with a key
- Information about the user is encrypted
 - Key based on the domain name
 - Only decrypted if you know for which domain name it was stored
- Domain name itself not stored
 - Only derived information
192.0.2.123 looks up malware.evil.nl
192.0.2.123 looks up malware.evil.nl

malware.evil.nl

Hash

16-06-2022 09:11
31F19D...
192.0.2.123 looks up malware.evil.nl

malware.evil.nl

16-06-2022 09:11

Hash

31F19D...

Hash

6F8E1E...

evil.nl
192.0.2.123 looks up malware.evil.nl

malware.evil.nl

Client info: 192.0.2.123, ...

evil.nl

Hash

Encrypt

16-06-2022 09:11 31F19D... 6F8E1E... 78C6EE1193...
192.0.2.123 looks up malware.evil.nl
Who looked up malware.evil.nl?

<table>
<thead>
<tr>
<th>Time</th>
<th>Domain</th>
<th>User info</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-06-2022 09:05</td>
<td>A623BE...</td>
<td>DF55912A1B...</td>
</tr>
<tr>
<td>16-06-2022 09:10</td>
<td>38FE31...</td>
<td>56ED4CB784...</td>
</tr>
<tr>
<td>16-06-2022 09:11</td>
<td>31F19D...</td>
<td>78C6EE1193...</td>
</tr>
<tr>
<td>16-06-2022 09:14</td>
<td>6789DE...</td>
<td>C45DE823FF...</td>
</tr>
</tbody>
</table>
Who looked up malware.evil.nl?

<table>
<thead>
<tr>
<th>Time</th>
<th>Domain</th>
<th>User info</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-06-2022 09:05</td>
<td>A623BE...</td>
<td>DF55912A1B...</td>
</tr>
<tr>
<td>16-06-2022 09:10</td>
<td>38FE31...</td>
<td>56ED4CB784...</td>
</tr>
<tr>
<td>16-06-2022 09:11</td>
<td>31F19D...</td>
<td>78C6EE1193...</td>
</tr>
<tr>
<td>16-06-2022 09:14</td>
<td>6789DE...</td>
<td>C45DE823FF...</td>
</tr>
</tbody>
</table>

evil.nl

malware.evil.nl
Who looked up malware.evil.nl?

<table>
<thead>
<tr>
<th>Time</th>
<th>Domain</th>
<th>User info</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-06-2022 09:05</td>
<td>A623BE...</td>
<td>E47422...</td>
</tr>
<tr>
<td>16-06-2022 09:10</td>
<td>38FE31...</td>
<td>12A8B3...</td>
</tr>
<tr>
<td>16-06-2022 09:11</td>
<td>31F19D...</td>
<td>6F8E1E...</td>
</tr>
<tr>
<td>16-06-2022 09:14</td>
<td>6789DE...</td>
<td>BF5136</td>
</tr>
</tbody>
</table>

![Diagram showing the relationship between evil.nl and malware.evil.nl](image-url)
Who looked up malware.evil.nl?

<table>
<thead>
<tr>
<th>Time</th>
<th>Domain</th>
<th>User info</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-06-2022 09:05</td>
<td>A623BE...</td>
<td>E47422...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-06-2022 09:10</td>
<td>38FE31...</td>
<td>12A8B3...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-06-2022 09:11</td>
<td>31F19D...</td>
<td>6F8E1E...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>78C6EE1193...</td>
</tr>
<tr>
<td>16-06-2022 09:14</td>
<td>6789DE...</td>
<td>BF5136...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C45DE823FF...</td>
</tr>
</tbody>
</table>

evil.nl

78C6EE1193...

Decrypt

Client info: 192.0.2.123, ...
Who looked up malware.evıl.nl?

<table>
<thead>
<tr>
<th>Time</th>
<th>Domain</th>
<th>User info</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-06-2022 09:05</td>
<td>A623BE...</td>
<td>E47422...</td>
</tr>
<tr>
<td>16-06-2022 09:10</td>
<td>38FE31...</td>
<td>12A8B3...</td>
</tr>
<tr>
<td>16-06-2022 09:11</td>
<td>31F19D...</td>
<td>6F8E1E...</td>
</tr>
<tr>
<td>16-06-2022 09:14</td>
<td>6789DE...</td>
<td>BF5136...</td>
</tr>
</tbody>
</table>

surf.nl

78C6EE1193...

Decrypt

x
Privacy-friendly storage

- Who requested malware.evil.nl?
 - Need access to the keys

- Which domain names did 192.0.2.123 request?
 - User information is encrypted using the requested domain name
Additional safeguards

- Limited access to system
- Audit log
 - Who searched for what and when in the database?
 - Regular checks
- Data stored for limited time
 - No longer than 90 days
Some technical details

- DNS queries exported using DNSTAP
- Hashes using HMAC-SHA256
- Encryption using ChaCha20Poly1305, an authenticated encryption scheme
- Data per row: 139 bytes
 - ~4 TB for 90 days w/o overhead
- Stored in PostgreSQL database
 - Table partitioned per day
 - Index on partitions
- Goal to release as open source
Eat your own dog food

- Initial discussions with data protection officer positive
- Pilot for the internal SURF network
 - Real-time checks against known malicious domain names
- Internal presentation and blog post
- Regularly alerts for low level threats
- One alert with high threat level
 - Turned out to be a guest
- Data Protection Impact Assessment (DPIA) in progress
Performance

- DNSTAP non-blocking
 - Minimal impact on resolver
- Only symmetric encryption
- Simulations
 - ~5 billion queries for 1 million unique domains over 20 days, ~1TB data
 - ~5 seconds with index on all tables
 - ~50 seconds on single table without index
- Room for optimisations
Takeaways

- Think in advance which questions you need to answer
 - What data do you really need?
 - How can you store the data to limit possible abuse?
- Be transparent to users
- Security and privacy can go hand in hand
Questions?

Joeri de Ruiter
joeri.deruiter@surf.nl
www.surf.nl