PRIVACY-FRIENDLY LOGGING FOR SECURITY

Joeri de Ruiter

How it started

- Ransomware attack at Dutch university
- SURFcert identified domain names that could indicate infection
- Domain names shared with other organisations
- SURF asked which systems looked these up
- At SURF this was not logged
- How can we see what systems requested a specific domain name?

		X
	•	

Why do we want this?

- Early detection of infected systems
 - Malware often requests specific domain names
 - For example to connect with command & control servers
- Real-time alerting
 - Known malicious domain names
- Look back
 - For newly identified malicious domain names

- Phonebook of the Internet
- Translation from domain names to IP addresses
- For example: surf.nl \rightarrow 2001:610:508:108:192:87:108:15

- Phonebook of the Internet
- Translation from domain names to IP addresses
- For example: surf.nl \rightarrow 2001:610:508:108:192:87:108:15

- Phonebook of the Internet
- Translation from domain names to IP addresses
- For example: surf.nl \rightarrow 2001:610:508:108:192:87:108:15

4

- Phonebook of the Internet
- Translation from domain names to IP addresses
- For example: surf.nl \rightarrow 2001:610:508:108:192:87:108:15

Who requested a particular domain name?

- Logging queries at the DNS resolver
- Very useful to find possibly compromised systems
 - Domain names not always immediately known
- However: very privacy sensitive
 - It reveals the users' browsing behaviour
- How can we log and monitor DNS queries in a privacy-friendly manner?

What data are we interested in?

- Requested domain name
- Time of request
- Information to find the user, such as the IP address
- Easy solution: put it all in a database
 - Not very privacy-friendly
 - Can we do better?

What do we need?

- Privacy-by-design
- The only question we are interested in is:
 - Which users requested a particular (malicious) domain name?
- We are not interested in knowing which domain names a particular user requested
- Both questions require the same data: domain name and user info
- Can we design a system in which we can answer the first question, but not the second?

- Transform some text into a random looking string of characters
 - Always the same string for the same input
 - Outputs of the same length
 - One-way: you cannot easily get the original input given just an output

surf.nl 51EF8FD9D7B9996C89DB2F0AD3F91C50

F20404BDD1003CDF110C929F8C238C98

Privacy-friendly storage

- Store the hash of the requested domain name
 - Possible to search for specific domain names
 - Not possible to see which domain names a particular user requested
 - Additional layer of security by protecting the hashes with a key
- Information about the user is encrypted
 - Key based on the domain name
 - Only decrypted if you know for which domain name it was stored
- Domain name itself not stored
 - Only derived information

Time	Domain		User info
16-06-2022 09:05	A623BE	E47422	DF55912A1B
16-06-2022 09:10	38FE31	12A8B3	56ED4CB784
16-06-2022 09:11	31F19D	6F8E1E	78C6EE1193
16-06-2022 09:14	6789DE	BF5136	C45DE823FF

Time	Domain		User info
16-06-2022 09:05	A623BE	E47422	DF55912A1B
16-06-2022 09:10	38FE31	12A8B3	56ED4CB784
16-06-2022 09:11	31F19D	6F8E1E	78C6EE1193
16-06-2022 09:14	6789DE	BF5136	C45DE823FF

Time	Domain		User info	
16-06-2022 09:05	A623BE	E47422	DF55912A1B	• • •
16-06-2022 09:10	38FE31	12A8B3	56ED4CB784	
16-06-2022 09:11	31F19D	6F8E1E	78C6EE1193.	•••
16-06-2022 09:14	6789D	BF5136	C45DE823FF.	• •
evil.nl —	Ha Q	sh 6F8I	E1E	
malware.e	evil.nl — Ha	sh → 31F:	19D	

Time	Domain		User info
16-06-2022 09:05	A623BE	E47422	DF55912A1B
16-06-2022 09:10	38FE31	12A8B3	56ED4CB784
16-06-2022 09:11	31F19D	6F8E1E	78C6EE1193
16-06-2022 09:14	6789DE	BF5136	C45DE823FF

Time	Domain		User info
16-06-2022 09:05	A623BE	E47422	DF55912A1B
16-06-2022 09:10	38FE31	12A8B3	56ED4CB784
16-06-2022 09:11	31F19D	6F8E1E	78C6EE1193
16-06-2022 09:14	6789DE	BF5136	C45DE823FF

Privacy-friendly storage

- Who requested malware.evil.nl?
 - Need access to the keys
- Which domain names did 192.0.2.123 request?
 - User information is encrypted using the requested domain name

Additional safeguards

- Limited access to system
- Audit log
 - Who searched for what and when in the database?

SUR

- Regular checks
- Data stored for limited time
 - No longer than 90 days

16

Some technical details

- DNS queries exported using DNSTAP
- Hashes using HMAC-SHA256
- Encryption using ChaCha20Poly1305, an authenticated encryption scheme
- Data per row: 139 bytes
 - ~4 TB for 90 days w/o overhead
- Stored in PostgreSQL database
 - Table partitioned per day
 - Index on partitions
- Goal to release as open source

Eat your own dog food

- Initial discussions with data protection officer positive
- Pilot for the internal SURF network
 - Real-time checks against known malicious domain names
- Internal presentation and blog post
- Regularly alerts for low level threats
- One alert with high threat level
 - Turned out to be a guest
- Data Protection Impact Assessment (DPIA) in progress

Performance

- DNSTAP non-blocking
 - Minimal impact on resolver
- Only symmetric encryption
- Simulations
 - ~5 billion queries for 1 million unique domains over 20 days, ~1TB data
 - ~5 seconds with index on all tables
 - ~50 seconds on single table without index
- Room for optimisations

Takeaways

- Think in advance which questions you need to answer
 - What data do you really need?
 - How can you store the data to limit possible abuse?
- Be transparent to users
- Security and privacy can go hand in hand

Questions?

👤 Joeri de Ruiter

🔀 joeri.deruiter@surf.nl

uww.surf.nl