NOKIA

Securing optical networks in the post-quantum world

Chris Janson Nokia June 2022

Agenda

Introductory context

Current cryptography and Quantumsafe security Emerging standards Secure optical

transport

2 © 2022 Nokia

Quantum Mechanics

If you think you understand quantum mechanics, you don't understand quantum mechanics.)

Richard P. Feynman

Quantum vs. Classic Computing

Quantum Computer Types

Analog Quantum Computer

Noisy Quantum Computer

Universal Quantum Computer

Nokia internal use

Quantum Computing Race

Many countries have well defined quantum programs

- National strategy established in 2016
- Canadian Space Agency Quantum Encryption and Science Satellite (QEYSSat) mission
- National Research Council of Canada's Security and Disruptive Technologies Research Centre: Quantum Sensors and Security program

- Chinese Academy of Sciences Center for Excellence
 in Quantum Information and Quantum Physics
- Quantum Experiments at Space Scale (QUESS)
 project (the Micius satellite)
- Beijing-Shanghai Quantum Secure Communication Backbone
- National Quantum Laboratory—backed by a massive US\$10 billion in funding over five years

- EuroQCI Declaration
- QTEdu
- Quantum Industry Consortium
- QuantERA
- OpenQKD
- European Quantum Communication Infrastructure (EuroQCI)

- National Strategy for Quantum Technologies, with some US\$1.8 billion promised the sector
- Grand Challenge on first-generation NISQ quantum accelerators

Germany

- National strategy established in 2018 with US\$3.1 billion in fudging
- Quantum Technologies—From Basic Research to Market supports quantum technology research
- Grand Challenge competition in quantum communication
- QuNET initiative set up in 2018 to develop a quantum network for secure data transmission between federal authorities

- Quantum Technologies Roadmap established in 2019 backed by US\$663 million over five years
- National Quantum Laboratory

- National Quantum Technologies Programme with US\$540 million in funding for the first phase covering the period from 2014–2019, and US\$473 million the second phase
- National Quantum Computing Centre
- Rigetti Computing, a leading quantum computing company, has partnered with the government and leads a consortium to develop the UK's first quantum computer by 2023

- National Quantum Initiative set up in 2018 with US\$1.275 billion allocated
- National Quantum Coordination Office, part of the White House Office of Science and Technology Policy
- National Science Foundation, within it three
 Quantum Leap Challenges Institutes
- Quantum Foundry, a Center for Quantum Networks
- Five Quantum Information Science Centers backed by the DoE
- Quantum Economic Development Consortium (QED-C)

Source: https://thequantumdaily.com/2021/04/29/15-countries-with-national-quantum-initiatives/

Nokia internal use

Symmetric vs. Asymmetric Cryptography

Symmetric Algorithms

- Block ciphers (require chaining)
- Stream ciphers

Symmetric Encryption

The same key is use for encryption and decryption.

- Digital Signatures
- Key Agreement
- Public Key Encryption
- Key Encapsulation

Asymmetric (Public Key) Encryption

The keys are different but are mathematically linked.

8 © Nokia 2022

Quantum Computing Impact on Today's Cryptography Some algorithms we rely on today will be completely broken

- Shor's algorithm discovered in 1994 by Peter Shor that can find prime factors of an integer and find discrete logs
- Grover's is a quantum search algorithm devised in 1996 by Lov Grover that improves search by a quadratic root factor

	Туре	Algorithm	Key Length	Effective Key Length		Quantum	
				Classic Computing	Quantum Computing	Attack	
	Asymmetric	RSA-1024	1024 bits	80 bits		Shor's	
_		RSA-2048	2048 bits	112 bits	0 hite		
		ECC-256	256 bits	128 bits	UDILS		
		ECC-384	384 bits	256 bits			
	Symmetric	AES-128	128 bits	128 bits	64 bits	Grover's	
		AES-256	256 bits	256 bits	128 bits		
				1		,	

Quantum Acronyms

Not all technologies imply quantum-safe

Quantum Computing (QC)

Machines that use the properties of quantum physics to store data and perform computations

Quantum Random Number Generator (QRNG)

Quantum random number generators create randomness by measuring quantum processes

Quantum-safe Cryptography (QSC) / Post-quantum Cryptography (PQC)

Algorithms resistant to attacks by both classical and quantum computers because they are based on hard math problems for which an efficient solution using a quantum algorithm does not exist

Quantum Key Distribution (QKD)

Distribution using properties found in quantum physics to exchange cryptographic keys in such a way that is provable and guarantees security

10 © 2022 Nokia

US NIST Post-Quantum Cryptography Standardization

"As the replacements for currently standardized public key algorithms are not yet ready, a focus on maintaining crypto agility is imperative. Until new quantum-resistant algorithms are standardized, agencies should continue to use the recommended algorithms currently specified in NIST standards."

NIST Report on Post-Quantum Cryptography, April 2016

11 © 2022 Nokia

Types of Post-Quantum Cryptography

Codes

- Introduced by McEliece in 1978
- Relies on hardness of decoding unknown codes
- Very large public keys
- Fast encryption and decryption

Lattices

- First commercial version was NTRU (1996)
- Two most important hard problems:
 - Shortest Integer Solution (SIS)
 - Learning With Errors (LWE)
- Competitive key sizes and fast operations

Multivariate

- Introduced by Matsumoto and Imai in 1998
- Based on the fact that solving n randomly chosen nonlinear equations in n variables is NP-complete
- Trade offs between key sizes and operation time

Supersingular Isogenies

- Introduced by Jao in 2009
- Relies on difficulty of finding isogenies (mappings)
 between Elliptic Curves
- Competitive key sizes, but slower operations

Secure Optical Transport Options

		Handshake		Data Encryption	
		Authentication	Key Establishment	Encryption	Overall Security
1	Classic	Asymmetric (RSA/ECDSA) Quantum-vulnerable	Asymmetric (EC)DH Quantum-vulnerable	Symmetric (AES 256) Quantum-safe	Quantum-vulnerable
2	Classic	Pre-shared Key Quantum-safe	Symmetric (AES 256) Quantum-safe	Symmetric (AES 256) Quantum-safe	Quantum-safe
3	Quantum Key Distribution (QKD)	Pre-shared Key Quantum-safe or Asymmetric (Dilithium/Rainbow) Quantum-safe but not standardized	QKD Quantum-safe	Symmetric (AES 256) Quantum-safe	Quantum-safe or Quantum-safe but not standardized
4	Post-quantum Cryptography (PQC)	Asymmetric (Dilithium/Rainbow) Quantum-safe but not standardized	Asymmetric (KIBER/SIKE/McEliece) Quantum-safe but not standardized	Symmetric (AES 256) Quantum-safe	Quantum-safe but not standardized
5	Hybrid	Asymmetric (RSA/ECDSA) Quantum-vulnerable	Asymmetric (EC)DH Quantum-vulnerable + Asymmetric (KIBER/SIKE/McEliece) Quantum-safe but not standardized	Symmetric (AES 256) Quantum-safe	Quantum-safe but not standardized
13	© 2022 Nokia				NOKIA

Preparing for Quantum-safe Migration Symmetric encryption and pre-shared keys are quantum-safe

Global government agencies will transition to quantum-safe algorithms

Until new algorithms are available, we need to rely on current algorithms

Existing safety mitigations:

Use larger key sizes in encryption algorithms

Use key agreement schemes that leverage large, symmetric, pre-shared keys

Summary

Quantum Computing & Quantum-safe Security

- Quantum computing is no longer a theoretical idea
- Billions are being invested around the world in quantum computer development
- It is possible we won't immediately learn about the first universal quantum computer
- Governments indicate that systems will be migrated to a suite of algorithms to mitigate the quantum threat (QKD and QRNG are not the solution)
- Global standards bodies are working on new quantum-safe algorithms and new encryption protocol specifications
- Some information is already vulnerable today to the future quantum-threat
- While hybrid mechanisms using asymmetric cryptography can help mitigate the quantum threat, the only 100% certain approach is to use **large symmetric encryption keys** and key establishment schemes that rely on **large pre-shared symmetric keys**

Back-up materials

Threat to Encryption

Information we transmit today is already vulnerable

An encryption protocol session, like TLS, consists of the handshake and the data encryption part

Threat to Encryption vs Authentication

The threat might be different, but the migration urgency is the same

- While both asymmetric encryption and authentication are vulnerable to quantum-enabled attacks, the threats are different
- Asymmetric encryption used today to encrypt information makes this encrypted information already vulnerable to the harvest & decrypt attack
- In the case of authentication in encryption protocol, the authenticity of information is only useful during a very short time during handshake to authenticate the key establishment keys
- In the case of authentication in document signing, the signatures can be invalidated and replaced with quantum-safe ones
- In the case of code signing, we really need to look at long-lived devices that are expected to last more than a decade and where replacing trust anchors can be challenging

Nokia internal use

Global Quantum-safe Cryptographic Standards

International Organization for Standardization

Nokia internal use

NIST Round 3 PQC Algorithms

	Туре	Name	Math
		Classic McEliece	Codes
	Key Encapsulation	CRYSTALS-KYBER	Lattices
		NTRU	Lattices
Finalists		SABER	Lattices
	Digital Signature	CRYSTALS-DILITHIUM	Lattices
		FALCON	Lattices
		Rainbow	Multivariate
	Key Encapsulation	BIKE	Codes
		FrodoKEM	Lattices
		HQC	Codes
Altornato Candidatos		NTRU Prime	Lattices
Alternate Candidates		SIKE	Supersingular Isogenies
	Digital Signature	GeMSS	Multivariate
		Picnic	Other
		SPHINCS+	Stateless Hashes

20 © 2022 Nokia

Nokia Optical Encryption – NE Portfolio

Nokia supports AES encryption at L1 using 256-bit quantum-safe key sizes

Nokia Layer 1 Quantum-safe Key Management Uses symmetric algorithms and pre-shared keys to ensure quantum safety

