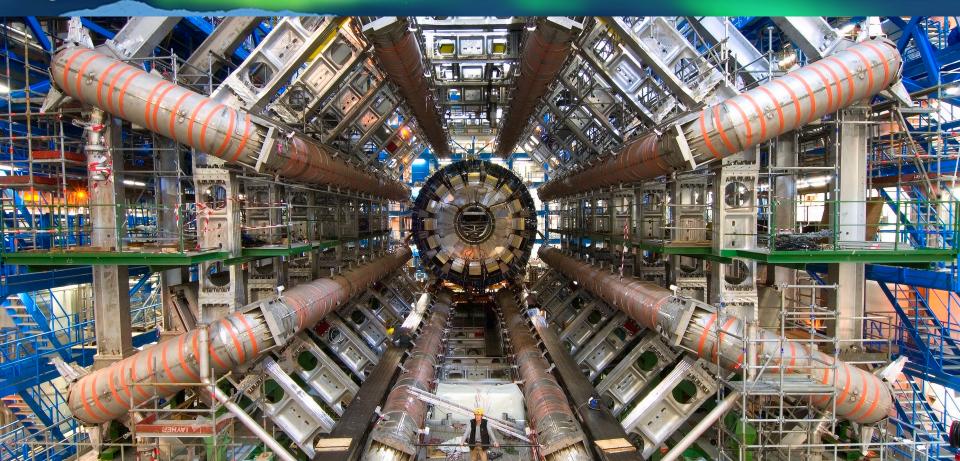
TERABIT TO THE TUNDRA

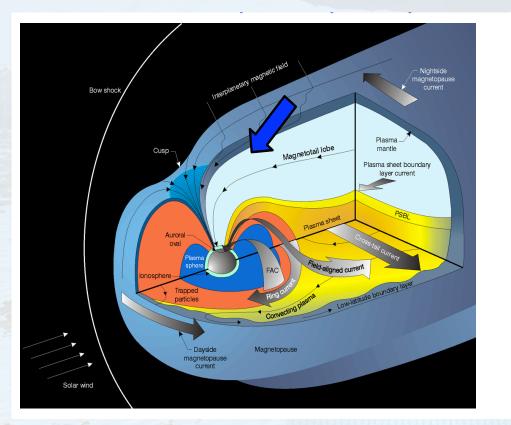
tim

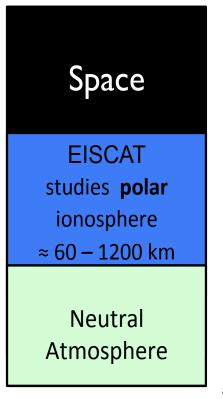
🖸 Sikt

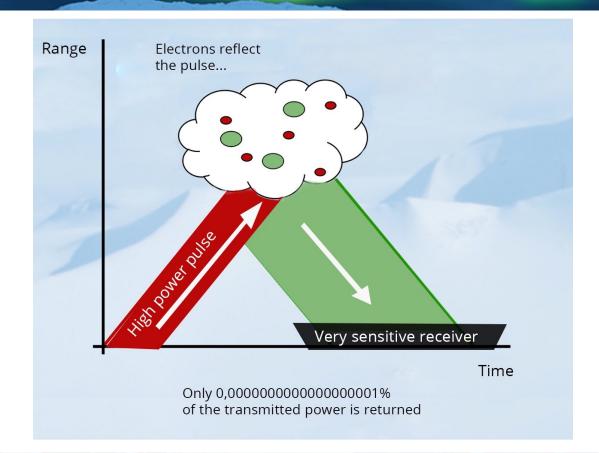


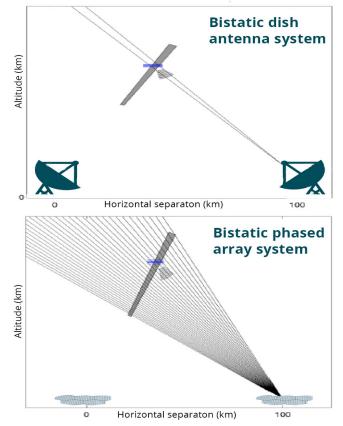
Anyone, anywhere, any time.

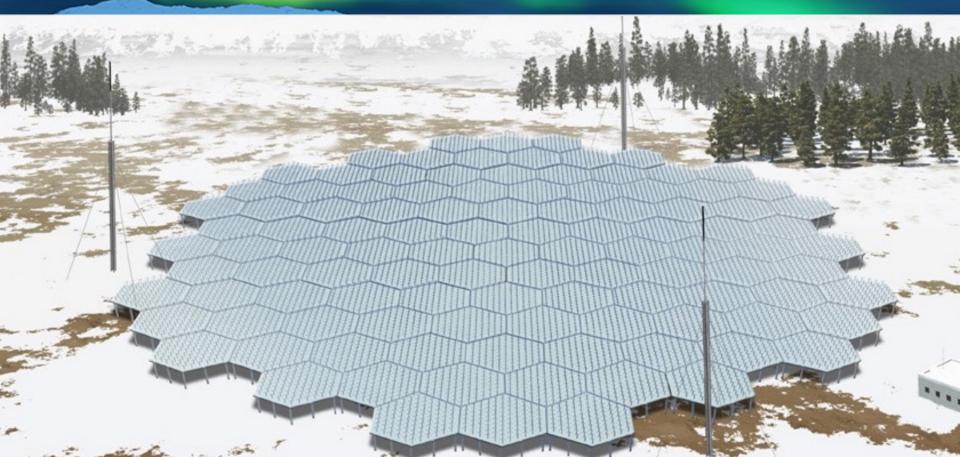
Research is completely unconstrained by the physical location of instruments, computational resources, or data


Big Science




How is earths atmosphere coupled to space?

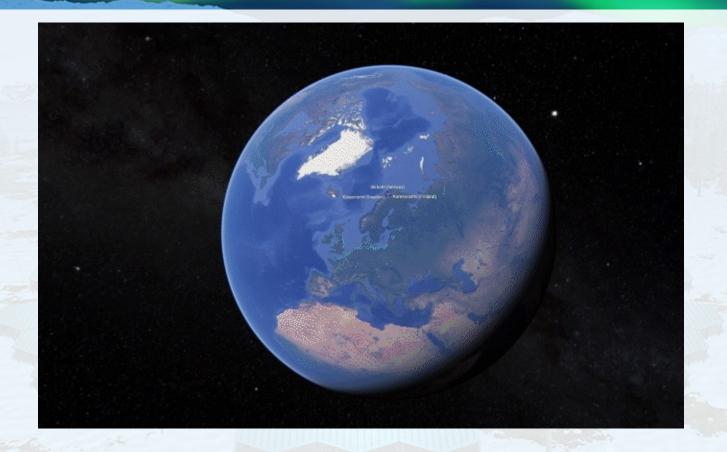



altitude

Incoherent scatter radar

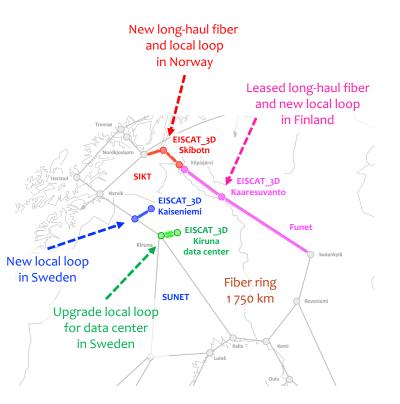
- Ionosphere studies
- Space weather studies, forecasting
- Space debris tracking
- Auroral observation
- Meteor studies
- Planetary imaging
- Many applications in collaboration with other instruments, satellites, etc.

EISCAT-3D Site



Images: EISCAT Scientific Association

Networking



EISCAT_3D and fiber networks in the arctic region

- Joint project between EISCAT, NORDUnet and the Nordic NRENs in Finland (Funet), Norway (SIKT) and Sweden (SUNET)

 Including the authors, a lot of our colleagues have involved in planning and implementation stages
- Three antenna sites with 2 optional locations in Norway and Sweden
 - o Skibotn, Norway, transmitter and receiver site
 - o Kaiseniemi, Sweden, receiver site
 - o Kaaresuvanto, Finland, receiver site
- Separate data center location somewhere within the region

 Later Kiruna, Sweden was chosen
- None of the antenna sites had fibers available
 - $\,\circ\,$ Required building new local loops and building or leasing fibers for the missing long-haul routes
- Fiber ring to avoid extensive service breaks
 - $\,\circ\,$ Difficult to fix issues in winter times due to harsh weather
 - $\,\circ\,$ Reuse existing fiber topologies where available
 - $\,\circ\,$ Flexibility to serve multiple potential data center locations

Network architecture – the beginning

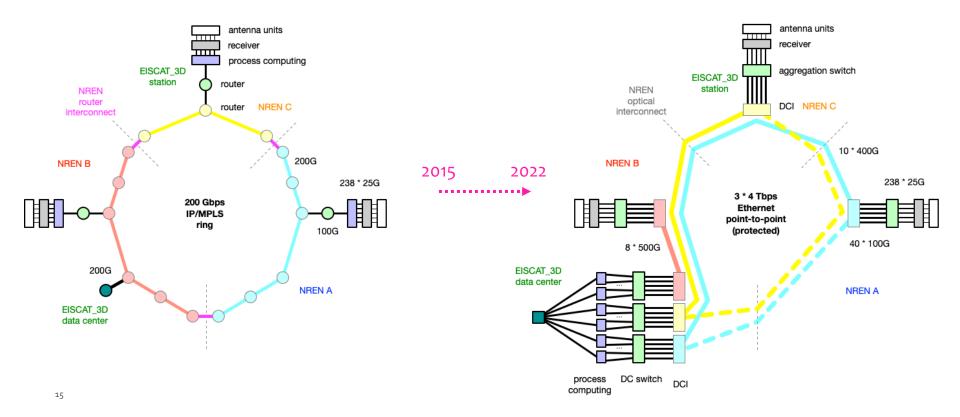
- Network planning started in 2015 together with the NRENs and EISCAT
 - Original EISCAT_3D architecture based on computing at the sites
 Bandwidth requirements up to 53 Gbps per site after local process computing
- Services to be offered with IP/MPLS networks

 Traditional design with router-to-router connections at the border locations
 Router connectivity to each antenna site
 Extensive use of backbone links which need to be upgraded as well
- NRENs were using optical line systems from 2000s
 Designed for 10G with dispersion compensation but 100G possible
 Fixed-grid and on some spans very limited spectrum available
 Vendor lock-in with capacity licencing

Network architecture – open optical line systems

• During the project existing optical systems started to reach endof-life

Need for new optical line systems to replace the older systems


- SUNET began with their renewal in 2016

 Very high OSNR with hybrid EDFA/Raman amplification
 Gridless spectrum
 Open line system with licensing-free spectrum
- Later other NRENs decided to follow the model • Economical and technical limitations were practically gone
- Huge development with transponders driven by cloud giants
 Disaggregated DCIs, up to 600+G line interfaces
 Significant cost reduction

Network architecture – "Terabit to the Tundra" model

- First proposals to change the original IP/MPLS model
 - 1. Separate Ethernet ring between the sites and the data center with domainspecific waves
 - o No need to upgrade backbone IP routers and links
 - 2. End-to-end Ethernet connectivity to the data center with alienwaves across the borders
 - o Even less waves needed
 - Possibility for optical protection
- But terabit-era was closing, could we refresh the model altogether?
 - Data received directly from the receivers to a single computing location would give big benefits for analysing stage
 - Receivers have Ethernet interfaces and could be transported
 - Increases transmission costs but decreases operational and equipment costs on sites
- EISCAT_3D project scientists were interested about the idea
 - o TCO estimates were calculated based on existing DCIs available
 - And eventually it was accepted and chosen

Network architecture – evolution towards terabit

Network architecture – "Terabit to the Tundra" challenges

"Terabit to the Tundra" model challenges Receivers in EISCAT_3D can generate up to 4 Tbps data rates from each site Need for serious amount of transmission capacity and spectrum Commitment from the NRENs to provide THz level spectrum for the project

Operation in multi-layer and -domain environments

 Optical line systems are operated independently by NRENs
 Transport and optical protection are operated jointly by involved NRENs
 Packet network is operated by EISCAT

Monitoring in multi-layer and -domain environments

 Transport and packet layer metric collection by Streaming Telemetry and/or SNMP

Feed metric data to common time-series database and dashboard frontend
 Later to extend to cover the line systems as well?

Network architecture – packet network

- Will be planned, acquired and managed by EISCAT
- Antenna sites
 - Receiver is transmitting up to 2 x 16 Gbps data streams through 2 x 25 GbE interfaces
 - Switches will aggregate 6 x 16 Gbps data streams into a 100 GbE transport interface
- Kiruna data center
 - Two options, not decided yet:
 - 1. Via switching layer (100 GbE only) to steer traffic to the computing nodes
 - 2. Directly from the transport to the computing nodes
- Most probably no need for deep buffering • Continuous data rate, no transforms from higher to lower speeds

Network engineering – optical network design

- Transparent optical interconnects between the networks
 ROADM-to-ROADM interconnects to pass signals
 Services logically terminated at the border
- Signal power equalisation between the domains

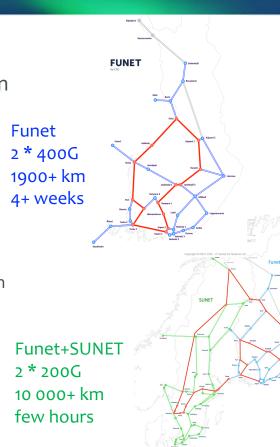
 Signals are always online via both optically protected routes
 Automatic or manual equalisation?
- Transponders and add-drops

 Tx side filters to keep high launch OSNR in colorless add-drop
 Receive power level optimised with amplifiers
- Conservative spectrum planning for the services
 100 GHz per 400G CP-16QAM (~ 70 Gbaud) : 1 THz per 4 Tbps
 Could be 87,5 GHz or 75 GHz if performance is good enough: 0.75 THz per 4 Tbps

Network engineering – capacity and reach

- All line systems designed to provide high OSNR
- Total OSNR estimated as the ring is not yet online

 Performance tested with similar transponders over different routes
 Primary routes relatively short: enough margins
 Secondary routes (up to 1300 km): lower margins but should be in safe side
- Either 400G or 500G waves are used


400G: Skibotn - Kiruna (primary 450 km, secondary 1 300 km)
400G: Kaaresuvanto - Kiruna (primary 600 km, secondary 1 150 km)
500G: Kaiseniemi - Kiruna (125 km)

Network engineering – testing line system performance

- Nordic NRENs have performed intra-domain and multi-domain tests to evaluate optical line systems' performance

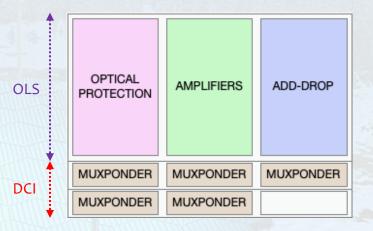
 All tests done close to the specified equipment limits
 Will give better estimates about the achievable reach
- Short term (hours or days) stability
 - 500G CP-32QAM (69 Gbaud) @ 125 HGz channel, over 500 km
 400G CP-16QAM (69 Gbaud) @ 125 GHz channel, over 2 500 km
 2 x 200G CP-QPSK (69 Gbaud) @ 150 GHz channel, over 7 000 km
 2 x 200G CP-QPSK (69 Gbaud) @ 100+100 GHz channels, over 10 000 km
 300G CP-8QAM (69 Gbaud) @ 125 GHz channel, over 4500 km
- Long-term (weeks) stability

 2 × 400G CP-16/32QAM hybrid (67 Gbaud) @ 150 GHz channel, over 1 900 km

Building the system – equipment

Transport and protection models were designed by NRENs
 Onlymandatony requirements

Only mandatory requirements


• TCO over 10 year period used to differentiate alternatives

- \circ Return-to-factory support and own spares to drive costs down
- Separate network management system to enable joint operation
- Three separate 4 Tbps point-to-point systems

 Total capacity 12 Tbps
- 4 Tbps point-to-point system configuration (ADVA)

 OLS platform: optical protection, amplification and add-drop
 DCI platform: muxponders (max. 2 * 600G per module)
 40 * 100GbE LR4 client interfaces towards the packet network
- DCI based transport is very compact and energy efficient
 2 RUs for 4 Tbps
 Less than 3 kW (typical) power consumption per 4 Tbps link

Transport node in EISCAT_3D sites

Building the system – site status

- Instruments has been already tested in the test subarray
- Serial production of antenna fields has been finalised
- Instrument production ongoing and should be ready end of 2023
- Equipment installations and commissioning

 Optical line system extensions and transport: before end of Q4/2022
 Transport tests: Q1/2023
 Packet layer : 2023
 - Antenna fields: Norway autumn 2022, Finland/Sweden spring/summer 2023
 Instruments: Norway winter 2022, Finland/Sweden summer 2023
- First measurements planned
 Norway: early 2023
 Full system: end of 2023

Images: EISCAT Scientific Association

Rethinking Networking for Research Instruments

- Integration of Instrument, NREN, and Data Centre networks
 - "It's not just transport anymore"
 - The network is part of EISCAT_3D
 - Helping create a more powerful instrument
 - Enabled by (improved) technology
- New options w/ DCI optical equipment
 - Tunable & High capacity, small form factor, lower cost
- Modern Data Centre and Compute Facilities
 - Hosting, Facility Management, Containerized Computing
 - Large-scale Science Storage Facilities
 - ... integrated with instruments

The Role of the NREN

- Delivering the impossible
 - Terabit connectivity at 70'N
- Enabling Partnership for Science
 - Based on science workflows and the data lifecycle
 - Joint Process, NRENs included from early phases
 - Engaging the entire spectrum of e-Infrastructures
 - Helping scientists understand the possibilities
- Much more than a provider / customer relation
 - Terabit to the Tundra is a close collaboration to find the fit between research objectives and technology options
 - Taking the long view, building consensus over years
 - Transforming both the instrument and the network in the process

