NATIONAL DATA STORAGE DATA-LAKE-LIKE INTEGRATED DATA MANAGEMENT **SERVICES FOR R&E**

Data mgmt team: Krzysztof Wadówka, Adam Prycki, Eugeniusz Pokora, Filip Blicharczyk, Jan Bróździak, Krzysztof Błoniarz, Maciej Brzeźniak

Collaboration (security team): Mikołaj Dobski (security) Gerard Frankowski (security)

Collaboraiton (cloud, net, DC): Jacek Kochan (cloud) Sebastian Petruczynik (net) Rafał Mikołajczak (DC)

Director of Data Processing Technologies Division: Dr Norbert Meyer

ABOUT PSNC

- PSNC mission and activity:
 - HPC CENTER
 - NREN PIONIER CONNECTED TO GEANT
 - R&D center infrastructure & services projects
 - Services provider:
 - computing, storage, network, hosting, security
 - Certified: ISO 9001/27001
- PSNC in numbers:
 - 400+ people in 4 divisions: computing, aplications, network services, network
 - HPC: 6 PFLOPs -> 36 PFLOPs (2023)
 - Cloud: 12 000 cores, 80 TB RAM + 200 servers (2023)
 - Storage: 80 PB (disk) + 20 PB (tape) -> 0.5 ExaB (disk + tape)
 - Network: 11000 km of fibers in 21 cities WAN & MAN network

PSNC - POLISH NREN AND SERVICES PROVIDER FOR HPC/CLOUD/STORAGE APPLICATIONS

Polish Optical Internet Research Centre

Headquarter

Labs and offices

Living Labs Co-working area, spin-off

tan Network POZMAN

Secondary Data Centre

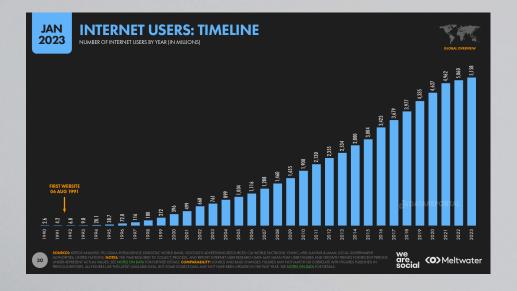
ABOUT PSNC

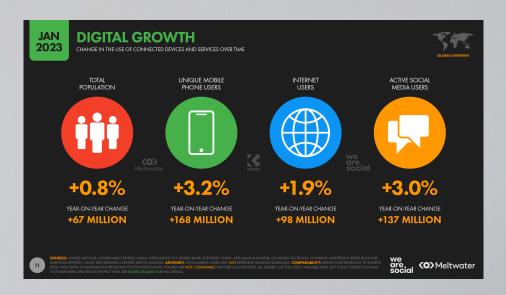
SPEAKERS - PSNC' DATA PROCESSING TECHNOLOGIES DIVISION

- INTRO, National Data Storage PROJECT
 - Maciej Brzeźniak
 - maciekb@man.poznan.pl
- SECURITY USE-CASE (DATA-LAKE)
 - Mikołaj Dobski
 - mikolajd@man.poznan.pl

DISCLAIMER: we're only fronting the work of many people within our team, in PSNC and in partnering institutions

CHALLENGES IN (SCIENTIFIC) DATA MANAGEMENT


CHALLENGES IN DATA MGMT: VOLUME


2015 PREDICTIONS:

- growing **volume**: **PetaBytes**
- pressure for **performance**: GB/s, IOPS
- user expectation: ease of use

SEEN IN 2023:

- Internet users growth is faster that global population growth!
- Most of data produced in the Internet

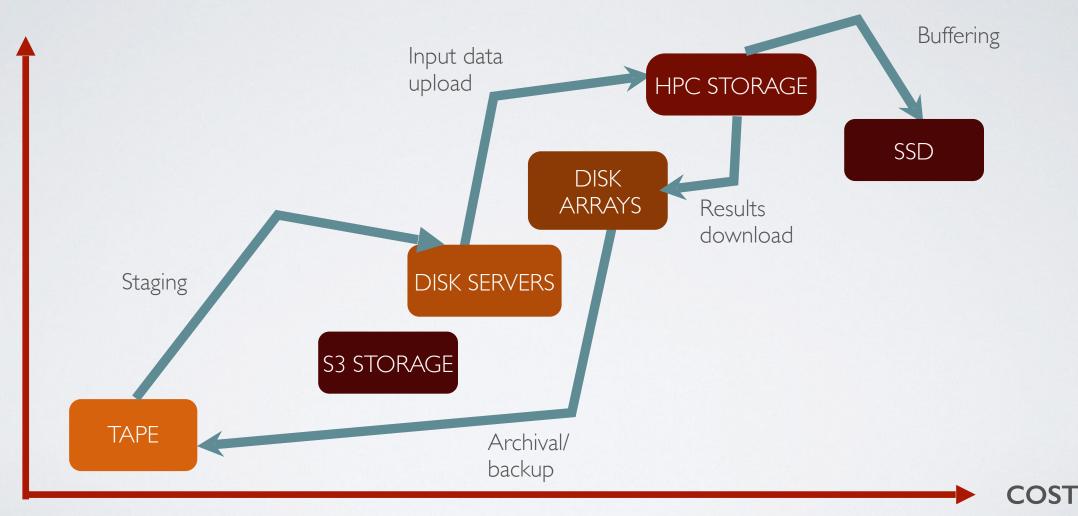
.....

2020

1231

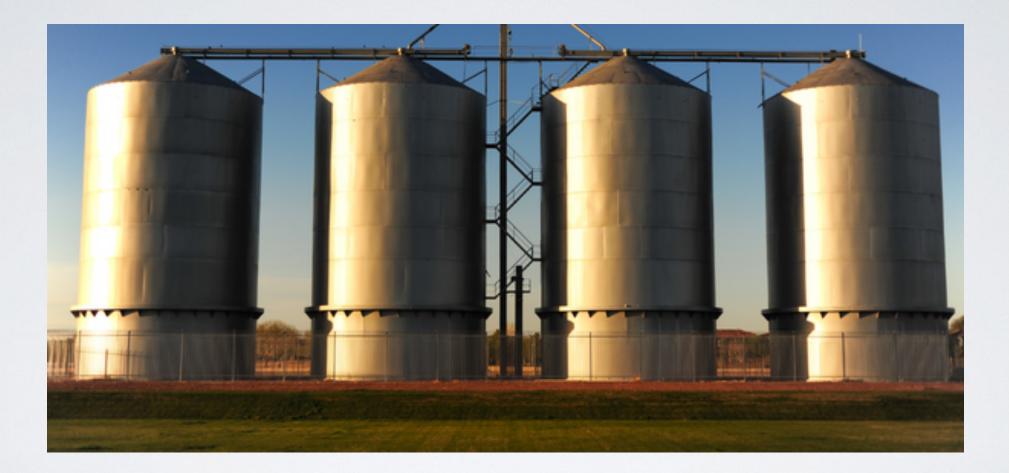
GB

IT PRO


36

MILLION

IT PROS WORLDWIDE


CHALLENGES IN DATA MGMT: DATA STORAGE :)

PERFORMANCE

DATA STORAGE, MIGRATION, LIFECYCLE MGMT

CHALLENGES IN DATA MGMT

DATA SILOSES, SERVICES FRAGMENTATION, DATA DUPLICATION

CHALLENGES IN DATA MGMT

DATA SILOSES, SERVICES FRAGMENTATION, DATA DUPLICATION

THE SOLUTIONS PART ONE

• pracelab

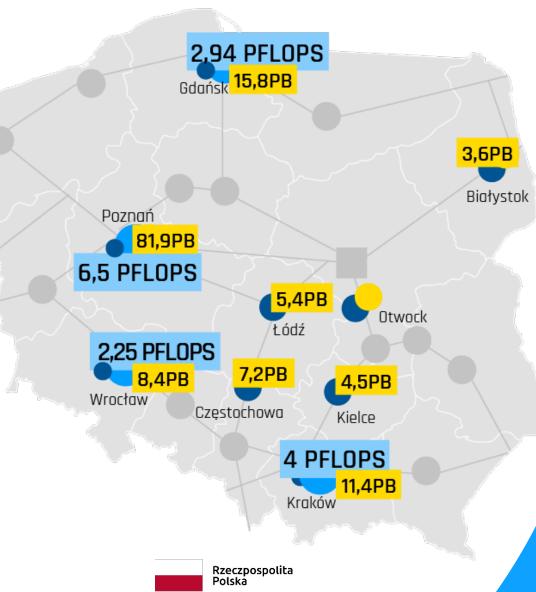
PRACE: collaboration in advanced computing in Europe

(nationally funded, local implementation)

Unia Europejska Europejski Fundusz Rozwoju Regionalnego

www.prace-lab.pl

pracelab


STORAGE SYSTEMS CO-LOCATED WITH COMPUTE (HPC, CLOUD)

- 100+PB CAPACITY IN HPC / CLOUD COMPUTING CENTERS
- PROVIDED LOCALLY, AND THROUGH NREN NETWORK
- DISK + NVMe STORAGE
- CO-LOCATED WITH COMPUTE

Europeiskie

teligentny Rozwó

DATA MGMT SERVICES - THE 'CLASSICS'

- HPC STORAGE:
 - LUSTRE
 - NVME
- CLOUD STORAGE:
 - RBD ON CEPH
 - SSD TIERS
- ARCHIVE STORGE:
 - CEPHFS
 - \$3

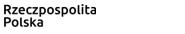
OK, BUTTHESE ARE THE BASICS INFRASTRUCTURE, LOW-LEVEL SERVICES

HOW TO INTEGRATE? DATA, STORAGE, COMPUTE ANALYSIS, EXPLORATION, EXPLOITATION?

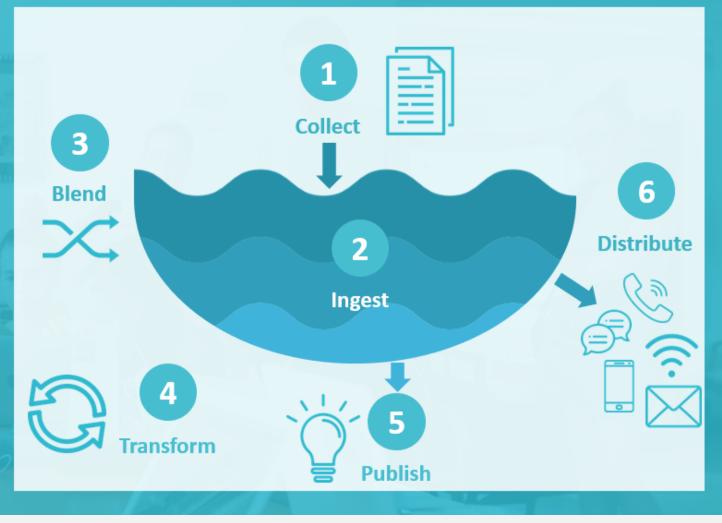
THE SOLUTION PART 2

The infrastructure for storage, access, and processing of large data sets in HPC, BigData i AI models based on the data-lake concept

Rzeczpospolita Polska

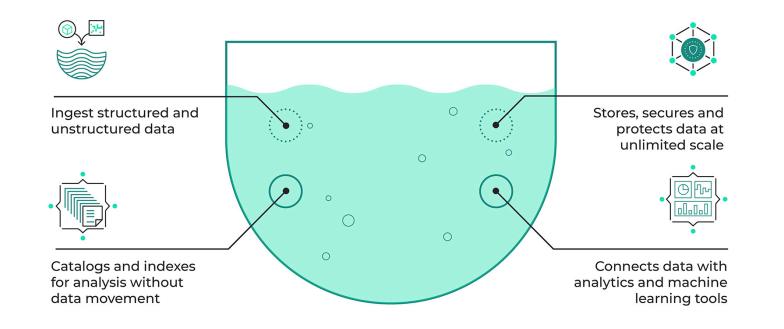

Project partners:

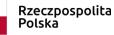
Polska



DATA LAKE TO THE RESCUE (1)

https://www.ecloudvalley.com/what-is-datalake-and-datawarehouse/


Unia Europejska Europejski Fundusz Rozwoju Regionalnego


DATA LAKE TO THE RESCUE (2)

Data Lakes Features

https://www.analyticsvidhya.com/blog/2022/10/top-data-lakes-interview-questions/

Unia Europejska Europejski Fundusz Rozwoju Regionalnego

DATA LAKE IN THE **NDS** PROJECT

NDS PROJECT ORGANISATION AND TECHNICAL ARCHITECTURE:

INFRASTRUCTURE LAB EMBEDDED SERVICES LAB FRONT-END SERVICES LAB REPOSITORIES LAB EDGE COMPUTING LAB

Unia Europejska Europejski Fundusz Rozwoju Regionalnego

DATA LAKE IN THE **NDS** PROJECT

ONLINE STORAGE:

- HPC STORAGE SCRATCH
 - LUSTRE: 20 PBs of HDD storage
 - NVME: **IPB** of NVMe cache (5%)
 - 500 GB/s, I MLN IOPS
- HPC USERS' DATA STORAGE:
 - 44 PB HDD storage
 - 2,2 PB NVMe cache (5%)
 - 440GB/s, 2MLN IOPS
- "MASS" STORAGE:
 - DISK SERVERS: **50PB** of disk storage
 - NVMe SERVERS: **5PB** of NVMe storage
- ARCHIVE STORGE:
 - 100 PB of disk storage
 - CEPH, S3

LABI: INFRASTRUCTURE (I)

LUSTRE

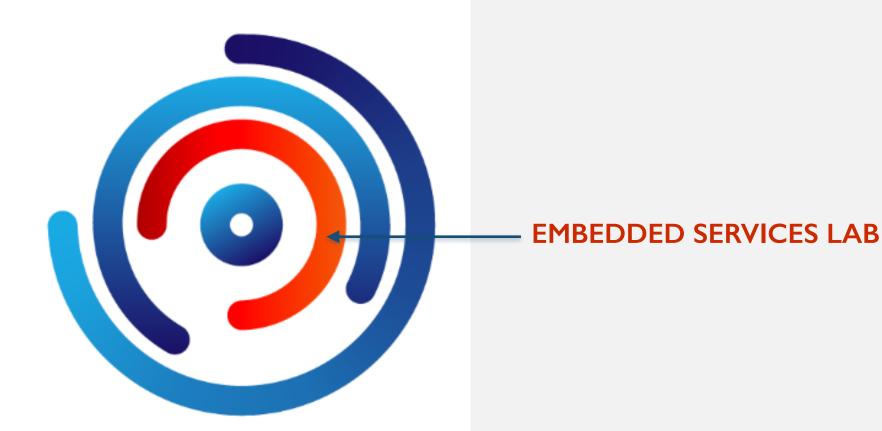
ZFS

CEPH

NVME

AMAZON

S3


OFFLINE STORAGE:

- TAPE SYSTEMS:
 - 500 PB IBM JAGUAR/LTO9
 - 5 PB HDD DISK CACHE (1%)
- HIERARCHICAL STORAGE (HSM):
 - FILE INTERFACE
 - S3 INTERFACE
- SERVICES: BACKUP./ARCHIVE
 - FOR DATA CENTRES
 - FOR END-USERS

LABI: INFRASTRUCTURE (2)

DATA LAKE IN THE NDS PROJECT

Rzeczpospolita Polska

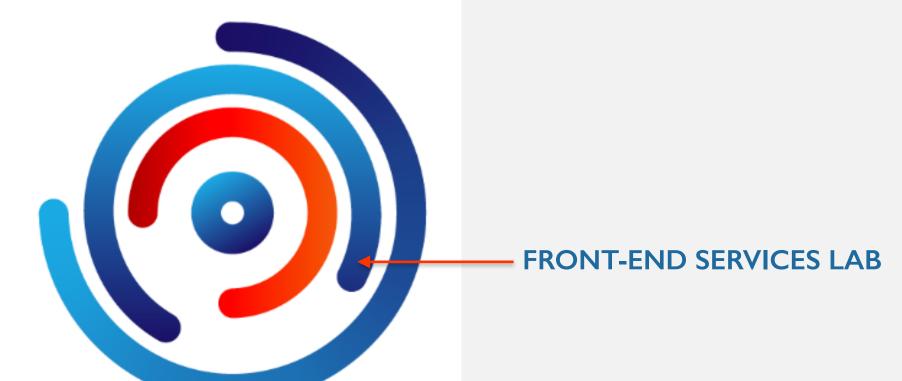
LAB2: EMBEDDED SERVICES (I)

SERVICES:

- **BACKUP** as a SERVICE:
 - COMMERCIAL ENGINE BASED
 - OPENSOURCE ENGINE BASED
- LONG-TERM **ARCHIVE** as a SERVICE
 - HPC STORAGE -> ARCHIVE INTERFACE
 - S3 INTERFACE TO TAPE
 - DATA PACKAGING
 - ARCHIVE INDEXING AND SEARCH

ZENKO CLOUD SERVER MIN.IO / CEPH

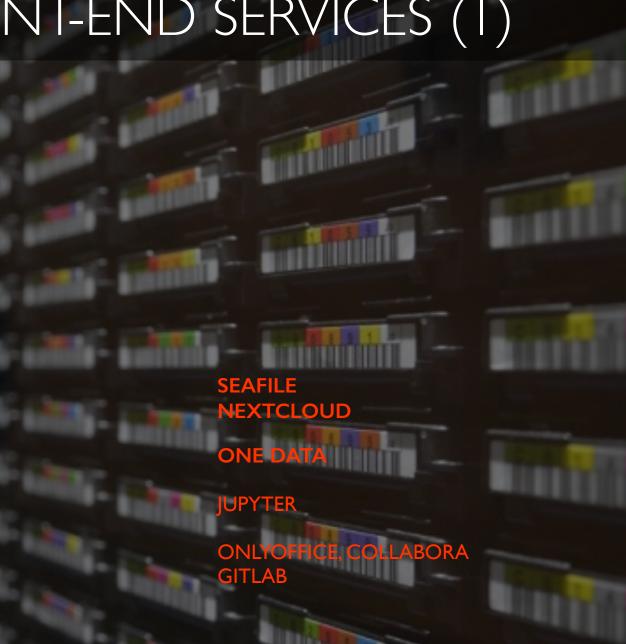
LAB2: EMBEDDED SERVICES (2)


NIFIED STREAMING

SERVICES:

- **DOCUMENT DATABASES** as a service:
 - ELASTIC SEARCH
 - OPENSEAR?CH
- **CONTENT DISTRIBUTION** as a services:
 - KALTURA
 - WOWZA / UNIFIED STREAMING
- DATA LAKE AS A SERVICE:
 - DATA ACCESS W/ SEARCH & FILTERING
 - ON-THE-FLY DATA CONVERSION
 - AUTOMATED PROCESSING (LAMBDAs)

DATA LAKE IN THE **NDS** PROJECT


Rzeczpospolita Polska

LAB3: FRONT-END SERVICES (1)

SERVICES:

- DATA ACCESS SERVICES:
 - SYNC & SHARE
 - FEDERATED DATA ACCESS
 - DATA MIGRATION: IN/OUT SERVICE
- DATA-CENTRIC APPLICATIONS:
 - DATA SCIENCE ENVIRONMENTS
 - COLLABORATION APPLICATIONS
 - DEVELOPERS'TOOLS

LAB3: FRONT-END SERVICES (2)

ENCRYPTIC

SERVICES:

- EXTRA SECURITY LAYER:
 - CRYPTOGRAPHY INTEGRATION
 - DATA ACCESS CONTROL
 - RECOMMENDATIONS, REGULATIONS...

DATA LAKE IN THE **NDS** PROJECT

Rzeczpospolita Polska

LAB4: DATA REPOSITORY SERVICES (1)

DATAVERSE

DSP

SERVICES:

- DATA REPOSITORY AS A SERVICE:
 - PROPRIETARY SOFTWARE-BASED
 - DLIBRA
 - OTHER SOLUTIONS
 - OPEN-SOURCE SOFTWARE-BASED
 - DATAVERSE
 - DSPACE

LAB4: DATA REPOSITORY SERVICES (2)

DSPACE

SERVICES:

- TYPES OF REPOSITORIES DELIVERED:
 - INSTITUTIONAL REPOSITORIES
 VS GENERIC / CATCH-ALL REPOS
 - MULTI-DOMAIN REPOS
 VS RESEARCH DOMAIN REPOS:
 - EARTH SCIENCE
 - BIOLOGY / MEDICINE
 - SATTELITE
 - PHYSICS

THE ACTUAL RESULTS PART 3 OF THE SOLUTION

THE PROJECT RESULTS

READY-TO-USE SERVICES:

- DEPLOYED IN THE NDS INFRA
 - TAILORED TO A DOMAIN
 OR A USER GROUP
 - GENERAL-AUDIENCE / CATCH ALL
 - DEMONSTRATION SERVICES / PROTOTYPES
- BLUEPRINTS:
 - DEPLOYMENT PLAYBOOKS
 - DOCUMENTATION + CODE (INTEGRATION CODE, AUTOMATION SCRIPTS)

USE-CASES PART 3 OF THE SOLUTION

USE-CASES

THREE LEVELS OF INTEGRATION

• INFRASTRUCTURE (STORAGE) - RADIO-ASTRONOMY LONG-TERM ARCHIVE

- STORAGE BACK-END FOR CACHING NODES (S3, CEPHFS)
- COUPLING WITH PROCESSING INFRASTRUCTURE

• PLATFORM LEVEL (STORAGE + PaaS) - BIOLOGY REPOSITORY

- laaS: CPU + RAM FOR DATAVERSE APPLICATION
- STORAGE BACK-END FOR DATAVERSE: S3 FOR DATA OBJECTS
- PaaS: COMPONENTS FOR INDEXING & SEARCH

• STORAGE + PROCESSING:


- STORAGE: DATALAKE: DATA PERSISTENCE + ONLINE AVAILABILITY + QUERY-ABILITY
- PaaS: COMPONENTS FOR INDEXING & SEARCH
- COUPLING WITH PROCESSING INFRASTRUCTURE: CLOUD AND HPC CLUSTER

RADIO-ASTRONOMY USE-CASE

LOFAR LONG-TERM ARCHIVE:

- Acquisition, analysis, processing
 - Distributed data sources
 - Centralised correlation,
 - Distributed storage
 - Processing in HPC centres
 - Data access to project members
- LTA (Long-Term Archive) in PSNC:
 - Constant data stream: I0 Gb/s
 - Since 2015, now **20PB+** of data
 - Tape storage + disk cache

http://www.astron.nl/dailyimage/pictures/20160518/First_byte_Poznan.png

RADIO-ASTRONOMY USE-CASE

- LONG-TERM ARCHIVE
 DATASET: 20+ PB
 RESEARCHERS NEED:
 - Long-term access to astronomical data need to keep reference historical data
 Scheduled and ad-hoc processing for detecting the astronomical events
 Ad-hoc data access
 high-performance download

LOFAR USE-CASE DISCUSSION

• CHALLENGES:

- Large data volume, pressure on performance
- Custom software stack (dCache, GridFTP)
- NDS system benefits:
 - •Cost-efficient data infrastructure
 - commodity disk servers
 - Distributed storage Ceph
 - Distributed, multi-node dCache
 - •I/O parallelism no bottle-necks
 - Coupling with cloud and HPC:
 - •Co-located data analysis, e.g. for content re-coding

BIOLOGY USE-CASE

- LARGE-SCALE DIGITISATION OF SPECIMENs: PLANTS, ANIMALS, FUNGHI
- PARTNER: ADAM MICKIEWICZ UNIVERSITY
 FACULTY OF BIOLOGY
- RESEARCHERS NEED:
 - Collaboration, ease of use, document editing
 - •Dropbox-like experience
 - Persistent data storage
 in a multi-tenant repository
 with indexing and search
- DATASET:
 - 100+ TB,
 - 100s 1000s of objects

BIOLOGY USE-CASE

- SHORT TERM REPOSITORY AND COLLABORATION SPACE:
 - LARGE VOLUMES: 10-100s TBs
 - EASE OF USE/ACCESS
 - FUNCTIONALITY
 - IMPLEMENTATION:
 - Seafile, NextCloud-based sync & share as a service
- (OPEN) DATA REPOSITORIES:
 - LARGE DATA VOLUMES, NUMBER OF OBJECTS
 - SUPPORT FOR META-DATA, INDEXING, SEARCH
 - PRESENTATION OF VARIOUS DATA FORMATS:
 - TEXT, DOCUMENTS
 - GRAPHS, 3D
 - IMPLEMENTATION:
 - DataVerse as a service
 - Alternatively DataCite as a service

DSPACE

Seafile

000

BIOLOGY USE-CASE DISCUSSION

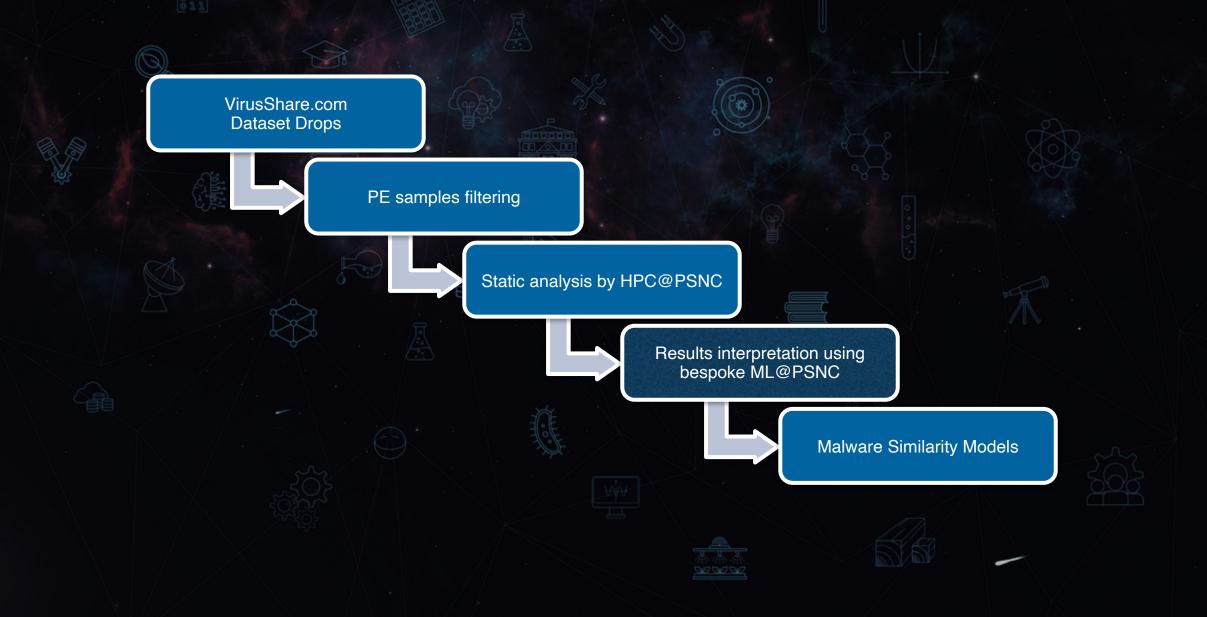
• CHALLENGE:

- Different interactions with the data sets, in various stages of digitisation
 - First ease of use, interaction
 - •Then storage persistency, query ability, efficient access
- NDS system benefits:
 - Integrated sync & share provided the dropbox-like experience
 - •Repository software enabled multi-tenancy (spaces)
 - and flexible access control (1st internal repository, then public)
 - Platform-provided indexing and search engine: OpenSearch enables data exploitation and exploration
 - •Sync & share -> data repository deposit mechanism automatised migration

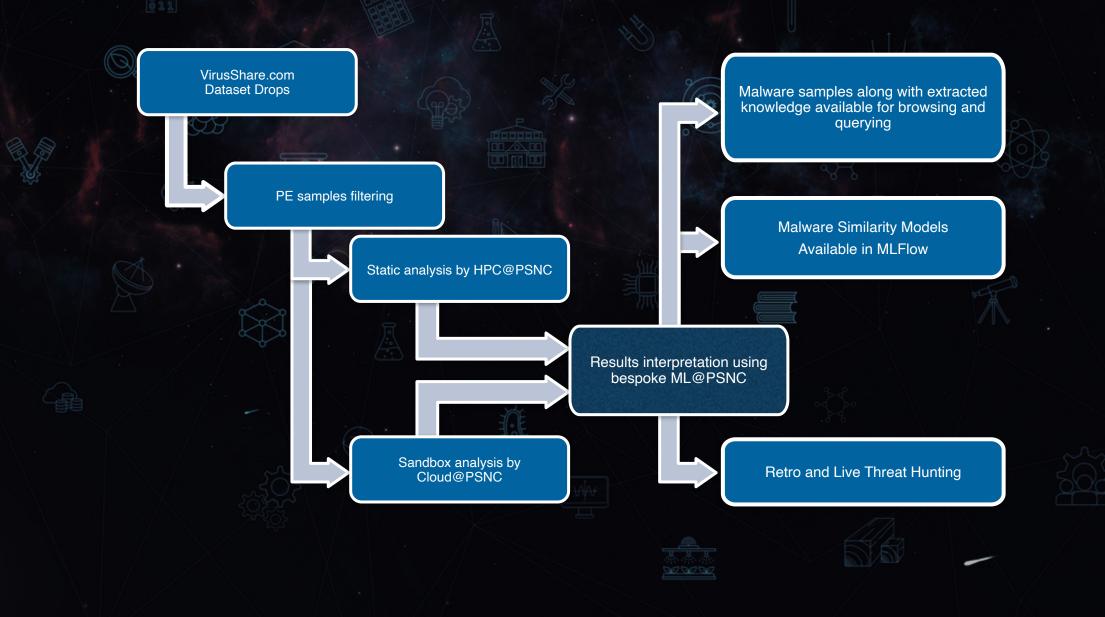
SECURITY USE-CASE ENRICHED MALWARE DATA LAKE (EMD)

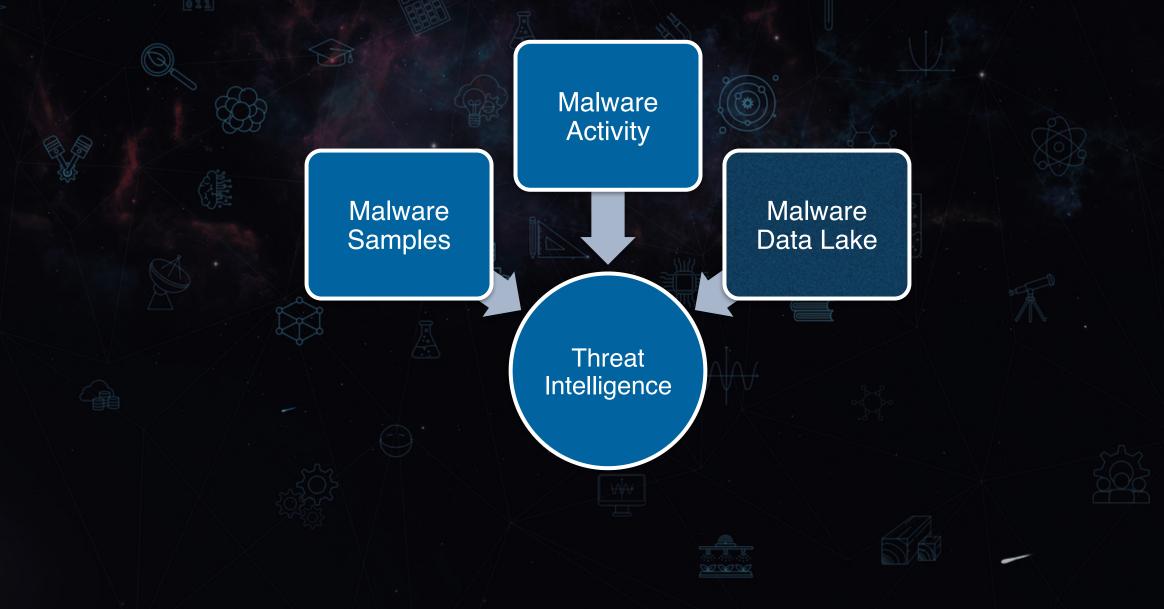
• IDEA

- Automated malware gathering
- Defined unified analysis workflows @HPC
- Multidimensional queries for results
- Threat hunting both live and retro

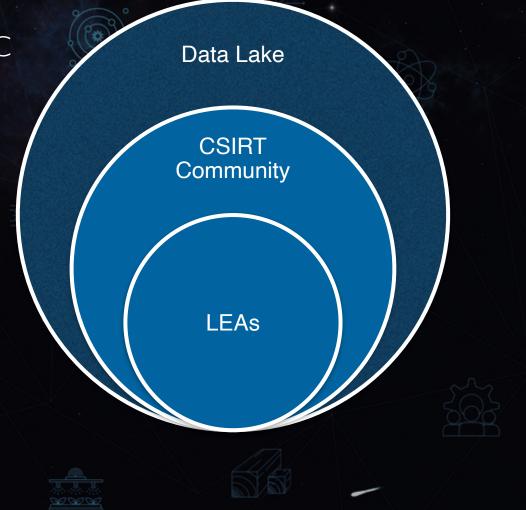

SECURITY USE-CASE ENRICHED MALWARE DATA LAKE (EMD)

- STORED DATA
 - Raw malware samples
 - Analysis results serving as rich ,,meta'' data
 - Static analysis
 - Sandbox results (incl. RAM, disk & network dumps)
- NUMBERS (so far)
 - **I7TB** (~20 mln) raw malware samples (Windows PE)
 - 250 TB decompiled sources
 - 3 TB malware capabilities metadata used for indexing


EMD POC FLOW


EMD FLOW

EMDWHY



EMDWHY

• DATA LAKE

- Automated malware gathering
- Defined unified analysis workflows @HPC
- Multidimensional queries for results
- Threat hunting both live and retro
- (Planned) CSIRT SaaS
 - Malware Analysis
 - Forensics support
- (Intended) LEAs
 - Dedicated projects
 - Bespoke extensions

EMD SYMBIOSIS

Dedicated Cloud Deployments for Polish

Malware analysis Nalware for CERTI Platform for community CSIRT community

Automated Malware Data Lake

SECURITY USE-CASE DISCUSSION

• CHALLENGE:

- •Large dataset (Petabyte-scale)
- •Query-ability!
- Can't go offline!
- •NDS system benefits:
 - storage infrastructure enables data availability
 - platform-provided indexing and search engine: OpenSearch
 - •tight coupling of HPC and Cloud computing clusters ensures low-latency, high-throughput data access

SECURITY USE-CASE DISCUSSION

BENEFITS

- Automated processing close to data:
 - High performance, lower resource consumption
 - Direct data access simpler system design
- Simplified architecture
 - •Services embedded in the data infrastructure
 - 'Server-less' architecture

SUMMARY - NATIONAL DATA STORAGE AN INCARNATION OF DATA LAKE CONCEPT

• POSITIONING:

AMBITIOUS PROJECT WITH PERSPECTIVE OF A LONG-TERM IMPACT AND BACKING OF USERS
DATALAKE TO COLLECT, STORE, PROTECT AND ENSURE USAGE OF THE DATA (IN-LINE WITH OPEN DATA INITIATIVES)

• RESULTS:

- TOOLS + BASIC SERVICES + BACK-END INFRASTRUCTURE
- READY TO USE SOLUTIONS: DEDICATED, GENERIC
- BLUEPRINTS
- RE-DEPLOYABLE SOLUTIONS
- 'ARCHITECTURE':
 - MINIMUM DEVELOPMENT EFFORT
 - MOSTLY INTEGRATION OF EXISTING COMPONENTS
 - LONG-TERM SUSTAINABILITY OF RESULTS

NATIONAL DATA STORAGE DATA-LAKE-LIKE INTEGRATED DATA MANAGEMENT SERVICES FOR R&E

THANK YOU!!!

MORE INFORMATION: HTTPS://KMD.PIONIER.NET.PL/

Data mgmt team: Krzysztof Wadówka, Adam Prycki, Eugeniusz Pokora, Filip Blicharczyk, Jan Bróździak, Krzysztof Błoniarz, Maciej Brzeźniak

Collaboration (security team): Mikołaj Dobski (security) Gerard Frankowski (security)

Collaboraiton (cloud, net, DC): Jacek Kochan (cloud) Sebastian Petruczynik (net) Rafał Mikołajczak (DC)

Director of Data Processing Technologies Division: Dr Norbert Meyer