

Networking at the WLCG: R&D activities

Carmen MISA MOREIRA Edoardo MARTELLI

CERN IT Department CS Group

6th June 2023

LHC, WLCG, networking WLCG Network R&D

P4_{flow} MultiONE

NOTED

LHC, WLCG, networking

WLCG: Worldwide LHC Computing Grid

LHCOPN (LHC Optical Private Network) **LHC** PN

PL-NCB

Tier0 to Tier1s network CA-TRIUMF AS36391 Dedicated 10/100/400Gbps links **US-BNL** CH-CERN 12 countries in 3 continents **US-FNAL** NL-T1 NL-T1 NDGF UK-RAL SURF AS1162 NIKHEF AS1104 A\$39590 AS43475

KR-KISTI

TW-ASGC

RRC-KI

AS59624

RRC-JINR

CN-IHEP

ES-PIC

DE-KIT

FR-CCIN2P3

IT-INFN-CNAF

10Gbps = Alice = Atlas = CMS = LHCb 20Gbps 100Gbps edoardo martelli@cern.ch 20230331

200Gbps 400Gbps

16 Tier1s + 1 Tier0

2.1 Tbps to the Tier0

LHCONE (LHC Open Network Environment)

Tier1s and Tier2s network

- Overlay VPN on RENs networks
- 31 REN Network Providers
- 117 Connected Sites
- 5 Continents

LHCOPN, LHCONE and Science DMZs

Science DMZ is a local network at a science laboratory that connects high speed data transfer servers

LHCOPN and LHCONE are Virtual Private Networks (VPN) that interconnect Science DMZs

LHCOPN and LHCONE are trusted network that can bypass expensive perimeters firewalls

WLCG Network R&D

- Expensive links may run idle for long time
- Some links get congested, while parallel ones run low
- Increasing number of LHCONE connected sites exposes internal resources to more risks
- Scarce visibility and understanding of the L7 origin of the network traffic

Motivation

- ❑ Make effective use of bandwidth, especially on the expensive transoceanic links, reduce idle periods
 → NOTED
- □ Increase visibility and understanding of network utilization → Scitags and P4_{flow}
- □ Reduce exposure of internal resources → MultiONE and P4_{flow}

R&D projects

- NOTED
 - □ Can improve data transfers when the network is the bottleneck
- Scitags
 - Enables tracking and correlation of WLCG transfers within Research and Education Networks
 - Makes it possible to monitor network flows at socket level
 - I P4_{flow}
 - Easy prototyping of advanced data plane services
 - Scitags accounting
- MultiONE
 - Aiming to increase security and control
 - Could take advantage of the packet marking initiative

P4 flow Programmable switches for accounting scitags-based IPv6 packets

Programming Protocol-independent Packet Processors: P4 language

Language for programming the data plane of network devices.

- Define how packets are processed.
- P4 program structure: header types, parser/deparser, match-action tables, user-defined metadata and intrinsic metadata.

Domain-specific language designed to be implementable on a large variety of targets

Programmable network interface cards, FPGAs, software switches and hardware ASICs.

EdgeCore Wedge100BF-32QS

100GbE Data Center Switch

- Bare-Metal Hardware
- □ L2/L3 Switching
- □ 32xQSFP28 Ports
- Data-Plane Programmability
 - Intel Tofino Switch Silicon
 - Barefoot Networks
- Quad-Pipe Programmable Packet Processing Pipeline
- □ 6.4 Tbps Total Bandwidth CPU: Intelx86 Xeon 2.0GHz
 - □ 8-core/48GB/2TB SSD

Intel Tofino P4-programmable Ethernet Switch ASIC

EdgeCore Wedge100BF-32QS

Network Operating System

RARE/FreeRtr

- Controls the data plane by managing entries in routing tables
- □ Free and open source router operating system
- Export forwarding tables to DPDK or hardware switches
 - □ via OpenFlow or P4lang
- No global routing table
 - Every routed interface must be in a virtual routing table

Scientific Network Tags (scitags) is an initiative promoting identification of the science domains and their high-level activities at the network level.

- Enable tracking and correlation of our transfers with Research and Education Network
 Providers (R&Es) network flow monitoring
- Experiments can better understand how their network flows perform along the path
- Sites can get visibility into how different network flows perform

Packet and flow marking specification

Flow label field of IPv6 header: 20 bits

- □ 5 entropy bits to match RFC 6436
- 9 bits to define the science domain
- □ 6 bits to define the application/type of traffic

Scitags \rightarrow Scientific network tags initiative [1

В

oplication/ty twork tage	/pe of traffic s initiative [1]	8 12 16 20 24 28 32 36	84 96 128 180 192 224 256 288	Source add Destination a	tatress
its 12 - 13 Entropy	3 Bits 14 - 22 Science Domain		Bit 23 Entropy	Bits 24 - 29 Application	Bits 30 - 31 Entropy
	Astro/HEP Science Domai Reserved - 0 Default - 65536 ATLAS - 32768 CMS - 98304 LHCb - 16384 ALICE - 81920 Bellell - 49152 SKA - 114688 LSST - 73728 DUNE - 8192	ins:		Application: Reserved - Default - perfSONAR - Cache - DataChallege - AnalysisDownload - DataAccess - CLIDownload - ProductionDownload -	- 0 - 1 - 2 - 3 - 4 - 9 - 10 - 13 - 19

Adams Read

First approach at IP level (layer 3)

Network configuration:

- □ Virtual Routing Forwarding
- Policy-based routing based on flow label field value
 - $\Box \quad Flow label 10 \rightarrow VLAN 40$
 - $\square \quad Flow label 20 \rightarrow VLAN 41$

Second approach at Ethernet level (layer 2)

Network configuration:

- Emulates a Tier 1/0 link
- Tier1/0 routers
 IPv4/IPv6 BGP peerings
- Tier0 router
 LHCOPN production border router
- Pure layer 2 bridges
 - VLAN 1000: IPv4 traffic
 - ULAN 1001: IPv6 traffic
- Tier0 servers
 - OpenStack product servers

P4 switch network configuration

Access-list:	access-list acl_all_ipv6_flowlabels					
	<pre># Match <experiment> and <any application=""></any></experiment></pre>					
	sequence 10 permit all any all any all flow 131076 & 261884 ATLAS <any></any>					
	sequence 11 permit all any all any all flow 65540 & 261884 CMS <any></any>					
	sequence 12 permit all any all any all flow 196612 & 261884 LHCb <any></any>					
	sequence 13 permit all any all any all flow 32772 & 261884 ALICE <any></any>					
	# Match <experiment> and <perfsonar application=""></perfsonar></experiment>					
	sequence 20 permit all any all any all flow 131072 & 261632 ATLAS <perfsonar></perfsonar>					
	sequence 21 permit all any all any all flow 65536 & 261632 CMS <perfsonar></perfsonar>					
	sequence 22 permit all any all any all flow 196608 & 261632 LHCb <perfsonar></perfsonar>					
	sequence 23 permit all any all any all flow 32768 & 261632 ALICE <perfsonar></perfsonar>					
	# Permit the rest of the traffic					
	sequence 30 permit all any all any all					
	exit					
Dura lavar 2 bridges:						
Pule layer 2 bridges.	interface sdn1.1000					
	description [VLAN ID=1000]					
	VLAN 1000 belongs to bridge 1					
	no log-link-change					
	exit					
	interface sdn1.1001					
	description [VLAN ID=1001] VLAN 1001 belongs to bridge 2					
	bridge-group 2 Filter IPv6 traffic at the					
	bridge-filter ipv6in acl_all_ipv6_flowlabels input based on the access-list					
	no shutdown sentences					
	no log-link-change					
	exit					

Statistics

The counters of the access-list are exported to Prometheus DB and Grafana:

Access-list IPv6 flow labels [number of packets]

$\rm P4_{flow}$ demo for SC22

We demonstrated the accounting of tagged packets is feasible.

MultiONE

Programmable switches for routing scitags-based IPv6 packets

LHCONE success

- LHCONE has proved to be very useful to interconnect transfer servers to their clients at high speeds
- Over the years, other High Energy Physics collaborations joined it (Bellell, NOVAE, Pierre Auger observatory, XENON, JUNO, DUNE)

Problems adding Collaborations

- The more sites join LHCONE, the less trustable it becomes
- The more the traffic volume grows in a single domain, the more difficult for RENs is to shape the load in their networks
- Funding agencies prefers to have a clear distinction of who is using the resources they fund

From LHCONE to MultiONE

A solution would be to implement a VPN for each Collaboration:

- Each site joins only the VPNs it is collaborating with, to reduce the exposure of their data-centre
- Flow label tagging could be used to policy route the traffic into the correct VPN

MultiONE prototype with Tofino switches

- □ Tofino switches can match the flow label field the IPv6 header
- A MultiONE Proof of Concept using flow label policy-based routing has been implemented in the GEANT P4lab

GÉANT P4Lab

MultiONE testbed in GP4Lab

SAO P4 switch routes the traffic with PBR rules based on an access-list.

- $\square \quad \mathsf{EXP-2 traffic routing: SAO DTN \rightarrow SAO \rightarrow \mathsf{MIA} \rightarrow \mathsf{CHI} \rightarrow \mathsf{AMS} \rightarrow \mathsf{FRA} \rightarrow \mathsf{FRA} \mathsf{DTN}}$

CERN DTNs generates tagged traffic to AMS DTN and HAM DTN.

□ The traffic is routed in the squared topology to WLCG or EXP-2 VPN so that LHCONE sites can only access other sites belonging to the same experiment and organization.

MultiONE testbed in GP4Lab

EXP-2 traffic routing from São Paulo to Amsterdam via Chicago and Miami.

MultiONE testbed in GP4Lab

WLCG traffic routing from São Paulo directly to Amsterdam.

NOTED Network Optimized Transfer of Experimental Data

Problematic

Large data transfers can saturate network links while alternative paths may be left idle

Architecture

NOTED (Network Optimized Transfer of Experimental Data)

An intelligent network controller to improve the throughput of large data transfers in FTS (File Transfer Services) by handling dynamic circuits.

Elements

FTS (File Transfer Service):

Analyse data transfers to estimate if any action can be applied to optimise the network utilization → get on-going and queued transfers.

CRIC (Computing Resource Information Catalog):

❑ Use the CRIC database to get an overview and knowledge of the network topology → get IPv4/IPv6 addresses, endpoints, rcsite and federation.

Interaction with FTS

query monit_prod_fts_raw_queue* → ~ 50 lines per job

- □ {source se, dest se}: source and destination endpoints involved in the transfer.
- {throughput, filesize avg}: throughput [bytes/s] and filesize [bytes] of the transfer.
- {active count, success rate}: number of TCP parallel windows and successful rate of the transfer.
- Submitted count, connections: number of transfers in the queue and maximum number of transfers that can be held.

```
source":
  "data": {
    "source se": "davs://grid-se.physik.uni-wuppertal.de",
    "dest se": "davs://webdav.mwt2.org",
    "timestamp": 1662470909066,
    "throughput": 180269,
    "throughput ema": 51234.889998671875,
    "duration avg": 1,
    "filesize avg": 581514.1612903225,
    "filesize stddev": 581514.1612903225,
    "success rate": 100,
    "retry count": 0,
    "active count": 0,
    "submitted count": 25229,
    "connections": 200,
    "rationale": "Good link efficiency",
    "endpnt": "bnl"
  "metadata": {
    "hostname": "monit-amqsource-ee2e71080d.cern.ch",
    "partition": "10",
    "type prefix": "raw",
    "kafka timestamp": 1662470912200,
    "topic": "fts raw queue state",
    "producer": "fts",
    " id": "d00e3711-9ba0-60e9-b4c9-36ac801d6ef2",
    "type": "queue_state",
    "timestamp": 1662470910441
```


Dataset structure and workflow

Configuration given by the user \rightarrow a list of {src rcsite, dst rcsite} pairs.

- 1. Enrich NOTED with the topology of the network:
 - Query CRIC database \rightarrow get the endpoints (α_i, β_i) that could be involved in the transfers for the given {src rcsite, dst rcsite} pairs.
- 2. Analyse on-going and upcoming data transfers:
 - Query FTS recursively \rightarrow get the on-going transfers for each set of endpoints (α_i, β_i). Network utilization = $\sum \varphi_{\text{on-going transfers}}(\alpha_i, \beta_i)_{\text{involved}}$
- 3. Network decision:
 - ❑ When NOTED detects that the link is going to be congested → provides a dynamic circuit via Sense/AutoGOLE.

Source	Destination	Data	Throughput	Parallel	Queued
endpoint	endpoint	[GB]	[Gb/s]	transfers	transfers
davs://ccdavatlas.in2p3.fr	davs://webdav.echo.stfc.ac.uk	139.3726	54.0827	453	28557
srm://dcsrm.usatlas.bnl.gov	davs://dcgftp.usatlas.bnl.gov	121.9655	53.6442	422	28538
davs://dav.ndgf.org	davs://dcgftp.usatlas.bnl.gov	202.7864	82.0855	862	57880
davs://atlaswebdav-kit.gridka.de	davs://eosatlas.cern.ch	205.3606	82.0725	888	57790
srm://dcsrm.usatlas.bnl.gov	davs://dcgftp.usatlas.bnl.gov	193.5176	58.8136	530	26294
davs://f-dpm000.grid.sinica.edu.tw	davs://webdav.lcg.triumf.ca	210.2710	51.0323	567	26314
davs://ccdavatlas.in2p3.fr	davs://webdav.echo.stfc.ac.uk	332.0009	81.7908	905	50152
srm://dcsrm.usatlas.bnl.gov	davs://dcgftp.usatlas.bnl.gov	326.5855	80.1554	903	50028

Status of software

Available in https://pypi.org/project/noted-dev/

Search projects	Q Help Sponsors Login	Register					
noted-dev 1.1.3	4	<u>stest version</u>					
pip install noted-dev	C Released: /	Aug 31, 2022					
NOTED: a framework to optimise netv	vork traffic via the analysis of data from File Transfer Services						
Navigation	Project description						
Project description	NOTED: a framework to optimise network traffic via the anal	ysis of					
3 Release history	data from File Transfer Services						
🛓 Download files	Copyright:						
Project links Homepage Source	© Copyright 2022 CERN. This software is distributed under the terms of the GNU General Public Licence version 3 (GPL Version 3), copied verbatim in the file "LICENCE.txt". In applying this Licence, CERN does not waive the privileges and immunities granted to it by virtue of its status as an Intergovernmental Organization or submit itself to any jurisdiction.						
itatistics	Compilation steps:						
View statistics for this project via <u>Libraries.io</u> 🖒, or by using <u>our public</u> dataset on Google BigQuery 🖒	# Steps to install NOTED using a virtual environment: ubuntu@pr1:-5 pip3 install virtualenv ubuntu@pr1:-5 pipthom3 -m venv venv-noted ubuntu@pr1:-5 , venv-noted/bin/activate						
Meta License: GNU General Public License /3 (GPLv3) (GPLv3 (GNU General Public License))	<pre>(verv-noted) ubuntuger1:-5 python3 -m pip install noted-dev # In this step you will be ask to enter your authentication taken # Write your configuration file, there is one example in noted/config/ (verv-noted) ubuntuger1:-5 nano noted/config/config.yaml # Rom NOTED # (verv-noted) ubuntuger1:-5 noted noted/config/config.yaml [verbosity debug/info/</pre>	warning]					
Author: Carmen Misa Moreira,	Program description:						

Common steps:

- # Create a virtual environment:
- \$ pip3 install virtualenv
- \$ python3 -m venv venv-noted
- \$. venv-noted/bin/activate

Ubuntu installation:

Install noted-dev

(venv-noted) \$ python3 -m pip install noted-dev

- # Write your configuration file
- (venv-noted) \$ nano noted/config/config.yaml
- # Run NOTED

(venv-noted) \$ noted noted/config/config.yaml
CentOS installation:

Download noted-dev.tar.gz

(venv-noted) \$ wget url pypi repo tar gz

Install noted-dev

(venv-noted) \$ tar -xf noted-dev-1.1.62.tar.gz

(venv-noted) \$ pip install noted-dev-1.1.62/

Run NOTED

(venv-noted) \$ noted noted/config/config.yaml

Status of software

Available in https://hub.docker.com/r/carmenmisa/noted-docker

carmenmisa/noted-docker 🕸

By <u>carmenmisa</u> • Updated 5 months ago NOTED: a framework to optimise network traffic via the analysis of data from File Transfer Services

Overview

Image

Tags

NOTED: a framework to optimise network traffic via the analysis of data from File Transfer Services

Copyright:

e Copyright 2022 CERN. This software is distributed under the terms of the GNU General Public Licence version 3 (GPL Version 3), copied verbatim in the file "LICENCE.txt". In applying this licence, CERN does not waive the privileges and immunities granted to it by virtue of its status as an Intergovernmental organization or submit itself to any jurisdiction.

Docker Compilation steps:

Download noted docker container sh-3.2# docker pull carmenmisa/noted-docker

- # Download noted docker container
- \$ docker pull carmenmisa/noted-docker
- # Run docker container
- \$ docker run --detach --entrypoint /sbin/init
- --network="host" --privileged --name
- noted\ controller carmenmisa/noted-docker
- # Copy your configuration file into the container
- \$ docker cp src/noted/config/config-example.yaml
 noted\ controller:/app/noted/config
- $\ensuremath{\texttt{\#}}$ Run commands in the container from outside
- $\$ docker exec noted $\$ controller noted -h
- \$ docker exec noted_controller
- /app/src/noted/scripts/setup.sh mail
- # Run NOTED
- \$ docker exec noted_controller noted config/config-example.yaml &

Configuration file

Usage: \$ noted [-h] [-v VERBOSITY] config file

optional arguments:

-h, --help show this help message and exit

-v VERBOSITY, --verbosity VERBOSITY defines logging level [debug, info, warning]

Example of config.yaml:

src rcsite: ['rc site 1', 'rc site 2', 'rc site 3', 'rc site 4' # Source RC Sites dst rcsite: ['rc site 1', 'rc site 2', 'rc site 3', 'rc site 4' # Destination RC Sites events to wait until notification: 5 # Events to wait until email notification max throughput threshold link: 80 # If throughput > max throughput -> START min throughput threshold link: 20# If throughput < min throughput -> STOP unidirectional link: False # If False both TX and RX paths will be monitoring number of dynamic circuits: 2 # Number of dynamic circuits sense uuid: 'sense uuid 1' # Sense-o UUID dynamic circuit sense vlan: 'vlan description 1' # VLAN description sense uuid 2: 'sense uuid 2' # Sense-o UUID dynamic circuit sense vlan 2: 'vlan description 2' # VLAN description from email address: 'email 1' # From email address to email address: 'email 1, email 2' # To email address subject email: 'subject' # Subject of the email message email: "message" # Custom message auth token: auth token # Authenticantion token

Transfers of WLCG sites in LHCONE (31st of August 2022)

If throughput > 80 GB/s \rightarrow NOTED provides a dynamic circuit. When throughput < 40 GB/s \rightarrow NOTED cancels the dynamic circuit and the traffic is routed back to the default path.

Observations of NOTED about the network utilization correspond with the reported ones in Grafana by LHCONE/LHCOPN production routers.

Therefore, by inspecting FTS data transfers it is possible to get an understanding of the network usage and improve its performance by executing an action in the topology of the network.

NOTED demo for SC22

- 1. NOTED looks in FTS for large data transfers.
- When it detects a large data transfer

 → request a dynamic circuit by using
 the SENSE provisioning system.
- 3. LHCOPN routers at CERN will route the data transfers over the new dynamic circuit.
- When the large data transfer is completed → release the dynamic circuit, the traffic is routed back to the LHCOPN production link.

NOTED demo for SC22

Components:

- NOTED controller and FTS at CERN
- NOTED controller at KIT
- Data storage at CERN, TRIUMF, KIT
- AutoGOLE/SENSE circuits between CERN-TRIUMF and KIT-TRIUMF SENSE circuits are provided by ESnet, CANARIE, STARLIGHT, SURF

Participants:

NOTED demo for SC22

Conclusions

NOTED:

□ NOTED can reduce the duration of large data transfers and improve the efficient use of network resources. It has been demonstrated with production FTS transfers at SC22.

P4_{flow}:

□ The IPv6 flow label accounting and forwarding can be implemented both at layer 3 and layer 2. It was demonstrated at SC22.

MultiONE:

By using the GP4Lab we demonstrated that MultiONE can be implemented by using PBR rules based on an access-list with the flow label definitions on the clients to control the access to each VPN.

Thank you Any questions?

Carmen MISA MOREIRA Edoardo MARTELLI

