



MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD



Funded by the European Union

# WHAT CAN WE LEARN ABOUT OUR PLANET USING SUBMARINE OPTICAL CABLES

PROF. SONIA MARTIN-LOPEZ

sonia.martinlo@uah.es

Department of Electronics – University of Alcala (Spain)

TNC 2023, Tirana- 08/06/2023

#### Lack of permanent geophysical observation of the ocean



#### **Can optical fibers help?**



- While poorly known among the telecom community, Optical Fibre Sensing (OFS) has been steadily developed for over more than 4 decades now.
- There are several examples of very successful OFS systems like the fibre-optic gyroscope. Most of these sensors require specific constructions to be developed on the fibre.
- With the advent of coherent communications, the optical fibre communication infrastructure itself with little or no modification has also proven to be a very good sensor of environmental variables.



What can we learn about our planet using submarine optical cab







#### Information carried by a lightwave



- Old, non-coherent communication systems (pre-2010) only measured intensity/amplitude. The amplitude of the light field is generaly not affected by small thermal/mechanic disturbances in the fiber:
  - Fibers are designed to confine light tightly in the core and fibers are cabled and deployed to avoid power losses caused by environmental variables,
- However, phase and polarization are indeed affected by thermal/mechanical disturbances, particularly when integrating over long lengths of fiber. <u>Both phase and polarization are</u> <u>routinely measured by coherent communication systems !!</u>







$$\varphi(L) = \int_0^L \frac{\omega n(z)}{c} dz$$

- Phase is affected by any physical change affecting the optical path, namely <u>strain and temperature</u>. Pressure sensitivity of the fibre is generally small but can be registered in the seafloor using seabed compliance (i.e. strain).
- Note that the laser frequency also impacts the phase. The laser frequency fluctuation in normal telecom lasers will completely screen environmental changes. <u>Special ultra-stable frequency</u> <u>lasers are needed.</u>

niversidad

GOBIERNO DE ESPAÑA



- Polarization will be affected by the same variables but will only change under a change in fibre <u>birefringence</u> (differential refractive index between the two polarization axis). Ideally fibres have no birefringence. Normal telecom fibres exhibit a very small residual birefringence whose orientation varies randomly across the length. The amount of polarization change will thus depend a lot from fibre to fibre.
- In other words, the evolution is rather unpredictable.



#### Localization of disturbances with phase (/polarization?)



- The perturbation reaches each receiver at a different time delay. The differential delay provides an estimate of the position. TX/RX require GPS synchronization.
- <u>The accuracy in the localization is limited by a number of</u> <u>things, but ultimately can not be much better than the</u> <u>wavelength of the perturbation (~1 km for seismic signals)</u>









#### DAS sensing in the sea bottom

INC, Tirana June 2023



- Single DAS interrogator transforms an optical cable into a dense array of *synchronized* strain seismometers/shortterm thermometers (measurements are <u>relative</u>)
  - Typ. 10s km to >100km, with metric spatial resolutions
  - Sampling frequency = pulse repetition rate < c/2nL</p>



iversidad

#### DAS performs *relative* measurements



Total strain accumulated in position 1 at instant P+1 will be  $\Delta \epsilon_{P+1,1} + \Delta \epsilon_{P,1}$ Strain will grow with the sqrt(Nref updates)!!!







#### **Phase-measuring DAS**



#### **Phase-measuring DAS using coherent detection**



#### Raw data in conventional phase-measuring DAS

☆What can we learn about our planet using submarine optical cabl



#### Single-shot sensing with chirped pulses



### A totally different measurement procedure...

#### **Chirped-Pulse DAS**

- Time shift of Zero-Intensity Point can be measured
- Almost Constant SNR along fiber

#### Phase-Measuring DAS

- Phase of Zero-Intensity Point cannot be measured
- High SNR variability & Fading ("Dead Zone")

GOBIERNO DE ESPAÑA



FNC, Tirana

June 2023

M. R. Fernández-Ruiz, et al. "Steady-Sensitivity Distributed Acoustic Sensors," IEEE J. Lightwave Technol. 36, 5690-5696 (2018)

Universidad

de Alcalá

#### ... with outstanding performance at low frequencies

TNC, Tirana June 2023



#### **Tracking internal waves with chirped-pulse DAS**









#### Tsunami warning using chirped-pulse DAS: Project SAFE



2023

- OFS on the telecom infrastructure itself is an attractive option for rapid deployment.
  - Low cost
  - No/minor modifications needed in the infrastructure.
  - All 3 approaches can be made compatible with running telecoms

Z. Jia et al, "Experimental Coexistence Investigation of Distributed Acoustic Sensing and Coherent Communication Systems," in Optical Fiber Communication Conference (OFC) 2021

- OFS can also be used to retrofit obsolete cables!
- OFS offers an insufficient number of variables (only strain/relative temperature changes): it should be complementary with the SMART approach for a full picture of the sea bottom.



Universidad

GOBIERNO DE ESPAÑA

| Contribution for<br>discussion                                                                    | DAS                                                            | SMART (wet sensors)                                                | SoP & Phase<br>Detection                                    |                                           |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------|
| Need to have<br>dedicated fibre                                                                   | No (?)                                                         | Yes (?)                                                            | No                                                          | ART and OFS                               |
| Possible utilization in<br>existing systems                                                       | Yes (?)                                                        | No                                                                 | Yes                                                         |                                           |
| Range for detection                                                                               | Short (?)                                                      | All the cable length if necessary                                  | All the cable length<br>if necessary                        |                                           |
| Seismic detection <ul> <li>Acceleration</li> <li>Vibration</li> <li>EEWs</li> <li>TEWs</li> </ul> | <ul> <li>Yes</li> <li>Yes</li> <li>Yes</li> <li>Yes</li> </ul> | <ul> <li>Yes</li> <li>Yes</li> <li>Yes</li> <li>Yes</li> </ul>     | <ul> <li>Yes</li> <li>Yes (?)</li> <li>Yes (?)</li> </ul>   |                                           |
| Environmental<br>detection<br>• Pressure<br>• Temperature<br>• Others                             | <ul> <li>Yes</li> <li>Yes</li> <li>No (?)</li> </ul>           | <ul> <li>Yes</li> <li>Yes</li> <li>Yes (?)</li> </ul>              | <ul> <li>Yes (?)</li> <li>No (?)</li> <li>No (?)</li> </ul> |                                           |
| Accuracy of<br>measurement                                                                        | ++                                                             | +++                                                                | + (?)                                                       |                                           |
| Ease of interpretation<br>and processing of<br>data obtained in real-<br>time and deferred        | ++ (?)                                                         | +++                                                                | + (?)                                                       |                                           |
| Reliability                                                                                       | +++                                                            | +++                                                                | +++                                                         |                                           |
| Spatial resolution of the observation                                                             | Accurate                                                       | Accurate                                                           | ?                                                           |                                           |
| Legal and permitting<br>problems                                                                  | No (?)                                                         | ?                                                                  | ??                                                          |                                           |
| Cost                                                                                              | 100k to 200k USD<br>in each CLS                                | ~10% to 15% of the total telecom<br>system cost                    | ?                                                           |                                           |
| Standardization                                                                                   | No                                                             | ITU-T, SG15/Q8 is trying to establish<br>a common general approach | No (?)                                                      |                                           |
| Contribution to<br>Security and Safety of<br>the sub cable                                        | Yes                                                            | Yes                                                                | Yes                                                         | Courtesi of Jose Barros                   |
| Operation in already<br>existing repeated<br>systems                                              | No (?)                                                         | No                                                                 | Yes (?)                                                     | Director of External Affairs<br>at ANACOM |
| Operation in already<br>existing non-repeated<br>systems                                          | Yes                                                            | No                                                                 | Yes (?)                                                     |                                           |

Universidad de Alcalá







SAFE SUBMERSE

#### Towards a "calibrated" DAS



- DAS can turn a submarine optical fiber into an array of thousands of geophysical strain/temperature sensors, allowing the recovery of many processes so far poorly understood (including processes that are key in the understanding of climate change evolution)
- DAS Compatibility with pre-existing telecom infrastructures
  - Fast/Massive implementation & Minimal deployment costs
- Additional dimension of data (space):
  - Advantages of 2D signal processing

GOBIERNO DE ESPAÑA

- Isolating different features (wave propagation, etc.) not previously available
- ...Already a reality: we only need to leverage this technology in existing infrastructure.



Universidad



#### Institut de Ciències del Mar



omnisens Securing asset integrity



## Acknowledgements

