# NOTED: a congestion driven network controller

RENDEZVOUS À RENNES Rennes, France | 10-14 JUNE 2024

#### **Carmen MISA MOREIRA**

CERN IT Department CS Group 12<sup>th</sup> June 2024



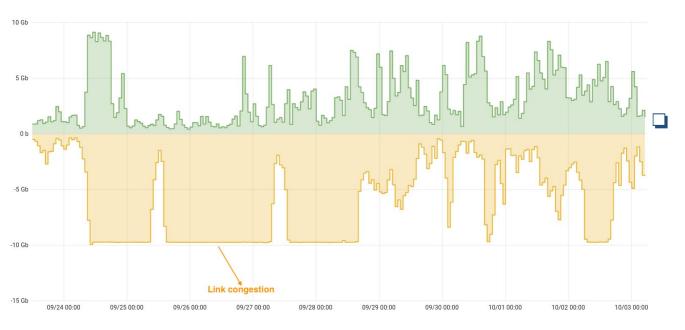


### Outline

#### Introduction

- Motivation
- Architecture
- Elements

#### Modes of operation


- Configuration file
- General Flowchart
- States of execution
- NOTED in MONIT Grafana
   Database parameters
- Package distribution
- NOTED demonstrations at SC22, SC23 and WLCG DC24
- □ Conclusions and future work
- Publications

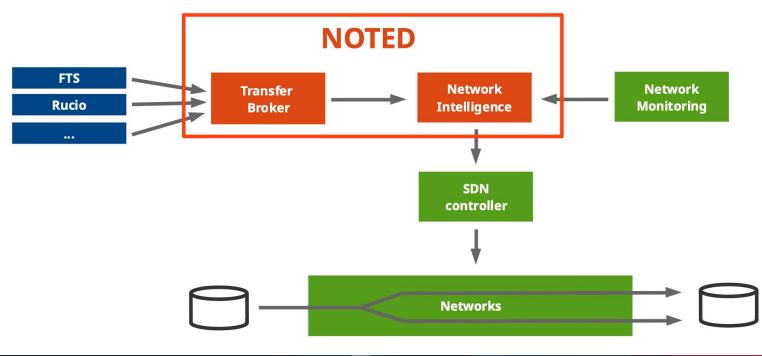


## Introduction



### **Motivation**




Large data transfers can saturate network links while alternative paths may be left idle



### Architecture

#### NOTED (Network Optimized Transfer of Experimental Data)

An intelligent network controller to improve the throughput of large data transfers in FTS (File Transfer Service)





### Elements

#### FTS (File Transfer Service):

❑ Analyse data transfers to estimate if any action can be applied to optimise the network utilization → get on-going and queued transfers.

CRIC (Computing Resource Information Catalog):

□ Use the CRIC database to get an overview and knowledge of the network topology  $\rightarrow$  get IPv4/IPv6 addresses, endpoints, rcsite and federation.





### Interaction with FTS

query monit\_prod\_fts\_raw\_queue\*  $\rightarrow$  ~ 50 lines per job

- □ {source se, dest se}: source and destination endpoints involved in the transfer.
- □ {throughput, filesize avg}: throughput [bytes/s] and file size [bytes] of the transfer.
- □ {active count, success rate}: number of TCP parallel windows and successful rate of the transfer.
- □ {submitted count, connections}: number of transfers in the queue and maximum number of transfers that can be held.



" source": { "data": { "source se": "davs://grid-se.physik.uni-wuppertal.de", "dest se": "davs://webdav.mwt2.org", "timestamp": 1662470909066, "throughput": 180269, "throughput ema": 51234.889998671875, "duration avg": 1, "filesize avg": 581514.1612903225, "filesize stddev": 581514.1612903225, "success rate": 100, "retry count": 0, "active count": 0, "submitted count": 25229, "connections": 200, "rationale": "Good link efficiency", "endpnt": "bnl" 1. "metadata": { "hostname": "monit-amgsource-ee2e71080d.cern.ch", "partition": "10", "type prefix": "raw", "kafka timestamp": 1662470912200, "topic": "fts raw queue state", "producer": "fts", " id": "d00e3711-9ba0-60e9-b4c9-36ac801d6ef2", "type": "queue state", "timestamp": 1662470910441

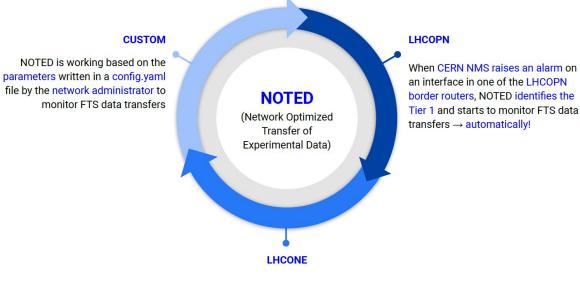


### Interaction with CRIC



query rcsite\*

```
"rc tier level": 1,
"FZK-LCG2":
                                                                                              "sites": [
    "country": "Germany",
                                        "services": [
    "description": "Tier 1",
                                                                                                  "name": "FZK",
    "federations": [ "DE-KIT" ],
                                            "arch": "",
                                                                                                  "tier level": 1,
    "infourl": "http://www.gridka.de",
                                            "endpoint": "cloud-htcondor-ce-1-kit.gridka.de",
                                                                                                  "vo name": "alice"
    "latitude": 49.099049,
                                            "flavour": "HTCONDOR-CE",
                                            "state": "ACTIVE",
    "longitude": 8.432665,
                                            "status": "production",
    "name": "FZK-LCG2",
                                                                                                  "name": "FZK-LCG2".
    "netroutes": {
                                            "type": "CE",
                                                                                                  "tier level": 1,
                                                                                                  "vo name": "atlas"
      "FZK-LCG2-LHCOPNE": {
        "lhcone bandwidth limit": 200,
        "lhcone collaborations": [
                                            "arch": ""
          "WLCG".
                                            "endpoint": "grid-ce-1-rwth.gridka.de",
                                                                                                  "name": "LCG.GRIDKA.de",
          "BelleII",
                                            "flavour": "HTCONDOR-CE",
                                                                                                  "tier level": 1,
                                                                                                  "vo name": "lhcb"
          "PierreAugerObservatory",
                                            "state": "ACTIVE",
                                            "status": "production",
          "XENON"
                                            "type": "CE",
        1.
        "networks":
                                                                                                  "name": "T1 DE KIT",
                                                                                                  "tier level": 1,
          "ipv4": [
            "157.180.228.0/22",
                                            "arch": "",
                                                                                                  "vo name": "cms"
            "157.180.232.0/22".
                                            "endpoint": "perfsonar-de-kit.gridka.de",
                                            "flavour": "Bandwidth",
            "192.108.45.0/24".
            "192.108.46.0/23".
                                            "state": "ACTIVE",
                                                                                              "state": "ACTIVE",
            "192.108.68.0/24"
                                                                                              "status": "production",
                                            "status": "production",
                                            "type": "PerfSonar",
          1,
                                                                                            1.
          "ipv6": [
                                          1.
            "2a00:139c::/45"
                                        1.
```






## Modes of operation



### Modes of operation



When CERN NMS raises an alarm on an interface in one of the LHCONE border routers, NOTED identifies the Tier 2, Tier 3 and starts to monitor FTS data transfers → automatically!

#### □ Much more complex for LHCONE since a single path is shared by multiple sites ~ 100



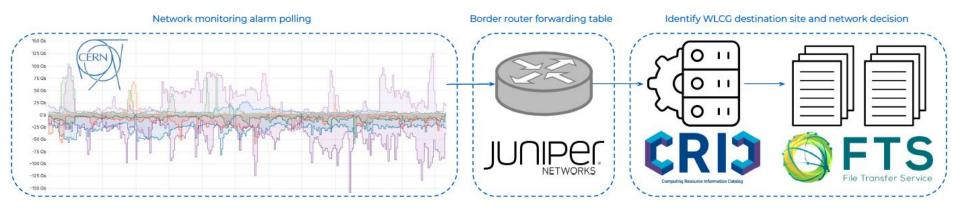


### Configuration file (CUSTOM version)

Usage: \$ noted [-h] [-v VERBOSITY] config\_file

positional arguments:

config\_file the name of the configuration file [config-example.yaml]


```
optional arguments:
    -h, --help show this help message and exit
    -v VERBOSITY, --verbosity VERBOSITY defines logging level [debug, info, warning]
```

#### □ Example of config.yaml:

```
src_rcsite: ['rc_site_1', 'rc_site_2', 'rc_site_3', 'rc_site_4'] # Source RC_Sites
dst_rcsite: ['rc_site_1', 'rc_site_2', 'rc_site_3', 'rc_site_4'] # Destination RC_Sites
events_to_wait_until_notification: 5 # Events to wait until email notification
max_throughput_threshold_link: 80 # If throughput > max_throughput -> START
min_throughput_threshold_link: 20 # If throughput < min_throughput -> STOP unidirectional_link: False # If
False both TX and RX paths will be monitoring
number_of_dynamic_circuits: 2 # Number of dynamic circuits
sense_uuid: 'sense_uuid_1' # Sense-o UUID dynamic circuit
sense_vlan: 'vlan_description_1' # VLAN description
sense_uuid_2: 'sense_uuid_2' # Sense-o UUID dynamic circuit
sense_vlan_2: 'vlan_description_2' # VLAN description
from_email_address: 'email_1' # From email address
to_email_address: 'email_1, email_2' # To email address
subject_email: 'subject' # Subject of the email
message_email: "message" # Custom message
auth_token: auth_token # Authentication token
```



### Flowchart (LHCOPN, LHCONE version)







### Network monitoring alarm polling (LHCOPN, LHCONE version)

Poll the alarms IN/OUT LOAD THRESHOLD EXCEEDED generated by Spectrum, the CERN Network Monitoring System.

| B Alarms    | / Spectru  | um Alarms යු ශ්             |             |          |                      |           |                     | uld• 🛱              | ② 2 Las    |
|-------------|------------|-----------------------------|-------------|----------|----------------------|-----------|---------------------|---------------------|------------|
| Instance Pr | oduction ~ | r Entity name Enter variabl | e value     | Cause ID | Enter variable value |           | Exclude secstring ~ |                     |            |
|             |            |                             |             |          | IT/CS Ala            | arm Histo | ry                  |                     |            |
| Severity 🐬  | 0cc 🐬      | Entity name                 | Туре 💎      | Class 🐬  | Alarm name 🐬         | Ack 🐬     | Start at ↓          | Cleared at          | Duration 🖓 |
| MINOR       | 1          | 1513-e-rjup1-1_irb.2126     | Gen_IF_Port | Port     | OUT LOAD THRESH      | No        | 2023-10-06 08:59:23 |                     |            |
| MINOR       | 1          | l513-e-rjup1-1_irb.3530     | Gen_IF_Port | Port     | OUT LOAD THRESH      | No        | 2023-10-06 08:43:05 |                     |            |
| MINOR       | 1          | 1513-v-rjux1-12_xe-1_0_11   | Gen_IF_Port | Port     | OUT LOAD THRESH      | No        | 2023-10-06 08:21:10 |                     |            |
| MINOR       | 1          | 1513-e-rjup1-1_irb.3530     | Gen_IF_Port | Port     | OUT LOAD THRESH      | No        | 2023-10-06 08:08:03 | 2023-10-06 08:22:50 | 00:14:47   |
| MINOR       | 1          | 1513-e-rjup1-1_irb.3530     | Gen_IF_Port | Port     | IN LOAD THRESHO      | No        | 2023-10-06 07:28:02 | 2023-10-06 07:32:47 | 00:04:45   |
| MINOR       | 1          | 1513-e-rjup1-1_irb.3530     | Gen_IF_Port | Port     | IN LOAD THRESHO      | No        | 2023-10-06 06:58:02 | 2023-10-06 07:07:47 | 00:09:45   |
| MINOR       | 1          | 1513-v-rjux1-12_xe-1_0_12   | Gen_IF_Port | Port     | OUT LOAD THRESH      | No        | 2023-10-06 06:46:00 | 2023-10-06 07:36:14 | 00:50:14   |
| MINOR       | 1          | 1513-e-rjup1-1_irb.2126     | Gen_IF_Port | Port     | OUT LOAD THRESH      | No        | 2023-10-06 06:34:23 | 2023-10-06 08:44:08 | 02:09:45   |
| MINOR       | 1          | 1513-v-rjux1-12_xe-1_0_13   | Gen_IF_Port | Port     | OUT LOAD THRESH      | No        | 2023-10-06 06:15:58 | 2023-10-06 07:55:57 | 01:39:59   |
| MINOR       | 1          | 1513-e-rjup1-1_irb.3530     | Gen_IF_Port | Port     | OUT LOAD THRESH      | No        | 2023-10-06 05:53:02 | 2023-10-06 06:27:47 | 00:34:45   |





### Border router forwarding table (LHCOPN, LHCONE version)

Identify the prefixes routed via the alarmed interface:

□ Find the IP of the next hop:

| BORDER-ROUTER> | show interface | es irb | .3530 ter | rse                    |        |
|----------------|----------------|--------|-----------|------------------------|--------|
| Interface      | Admin          | Link   | Proto     | Local                  | Remote |
| irb.3530       | up             | up     | inet      | 172.24.18.9/30         |        |
|                |                |        | inet6     | 2001:1458:302:38::1/64 | 1      |

#### **Find the routed prefixes:**

BORDER-ROUTER> show route next-hop 2001:1458:302:38::2 2a00:139c::/45 \*[BGP/170] 2d 23:16:51, MED 10, localpref 100 AS path: 58069 I, validation-state: unverified > to 2001:1458:302:38::2 via irb.3530



### Identify WLCG destination site (LHCOPN, LHCONE version)

Lookup routed prefixes in CRIC to identify the destination site

O DE-KIT

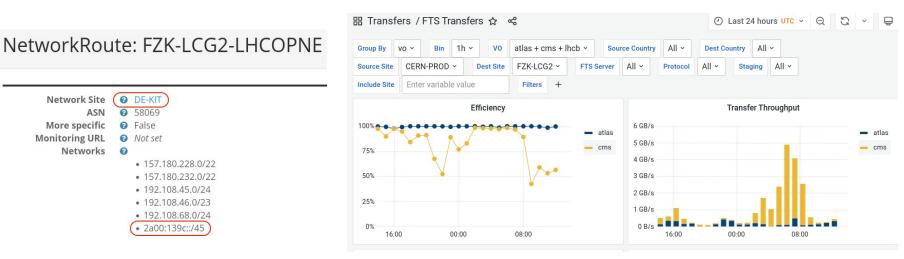
6 58069

False

0

ONOT Set

• 157.180.228.0/22 • 157.180.232.0/22


• 192.108.45.0/24

• 192.108.46.0/23

• 192.108.68.0/24

2a00:139c::/45

### Look for FTS transfers and make a network decision if it is causing congestion





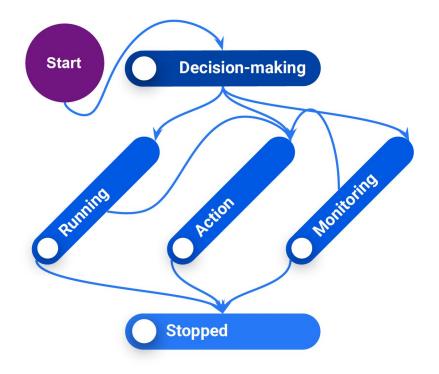
Network Site

More specific

Networks

Monitoring URL

ASN




## States of execution



### States of execution

- Decision-making: NOTED is making the network decision to potentially execute an action or not.
- Running: NOTED is running but there are no transfers in FTS so NOTED is waiting and running until the link-saturation alarm is cleared.
- Monitoring: NOTED is running and there are on-going FTS transfers, but they are below the defined bandwidth threshold that we establish.
- Action: NOTED is running and has triggered an SDN action to provide more bandwidth.
- Stopped: NOTED has stopped because there are no transfers in FTS and the link-saturation alarm has cleared.





## **NOTED** in MONIT Grafana



### **Database parameters**

#### Alarm parameters

#### Alarm ID (int):

an unique identifier assigned by the network controller incrementally

Alarm name (str): by convention is defined as the direction of the

alarm from source to destination

#### Alarm start (timestamp):

timestamp that defines the start of the alarm generated by CERN network monitoring system

#### Alarm end (timestamp):

timestamp that defined the end of the alarm generated by CERN network monitoring system

Router interface (str): describes the router and interface that is suffering network congestion

#### NOTED parameters

NOTED start (timestamp):

timestamp that defines the start of the network controller, i.e. NOTED is monitoring the link

#### NOTED end (timestamp):

timestamp that defined the end of the network controller, i.e. NOTED stops monitoring the link

#### NOTED version (str):

defines the version of NOTED that is being running, i.e. {custom, LHCONE, LHCOPN}

#### NOTED status (str):

defines the status of NOTED, i.e. {action, decision-making, running, monitoring, stopped}

#### NOTED description (str): brief description about network usage and actions taken by the network controller

Max FTS throughput (float): maximum throughput achieved during the large data transfer in FTS

#### SDN parameters

SDN status (str):

defines the action taken by the network controller, i.e. {provided, released, not provided}

#### SDN start (timestamp):

timestamp that defines the start of the action in the network, i.e. NOTED is adding capacity

#### SDN end (timestamp):

timestamp that defined the end of the action in the network, i.e. NOTED stops adding the link





### **MONIT** Grafana

WLCG DC24 LHCONE/LHCOPN DRY-RUN: NDGF ③



20



### **MONIT Grafana**

NOTED Alarms ()

| ID  | Alarm name              | Version | NOTED status    | NOTED action                                                                        | SDN status   | Max FTS Throughput [Gb/s] | Interface                      |
|-----|-------------------------|---------|-----------------|-------------------------------------------------------------------------------------|--------------|---------------------------|--------------------------------|
| 184 | CH-CERN to CA-TRIUMF    | CUSTOM  |                 | Spectrum generated an alarm: NOTED is inspecting FTS.                               | Not provided | 0                         |                                |
| 187 | DE-KIT to CA-TRIUMF     | CUSTOM  | Action          | On-going SDN. FTS throughput [Gb/s]: 5.56                                           | Provided     | 9.94                      |                                |
| 211 | CH-CERN to FR-CCIN2P3   | CUSTOM  | Monitoring      | No transfers found in FTS. NOTED is still running until Spectrum clears the alarm.  | Not provided |                           |                                |
| 219 | DE-KIT to CA-TRIUMF     | CUSTOM  |                 | The large data transfer is finished.                                                |              | 22.3                      |                                |
| 73  | ES-ATLAS-T2 to CH-CERN  | LHCONE  | Decision-making | An action on the link may be required: number of events: 1. Throughput [Gb/s]: 4.12 | Not provided |                           | 1513-e-rjup1-1_irb.111         |
| 83  | FR-CCIN2P3 to CH-CERN   | LHCONE  | Action          | On-going SDN. FTS throughput [Gb/s]: 4.94                                           | Provided     | 7.52                      | 1513-e-rjup1-1_irb.111         |
| 84  | RO-LCG to CH-CERN       | LHCONE  |                 | The large data transfer is finished.                                                |              | 10.3                      | 1513-e-rjup1-1_irb.111         |
| 85  | ES-PIC to CH-CERN       | LHCONE  | Action          | On-going SDN. FTS throughput [Gb/s]: 5.94                                           | Provided     | 12.6                      | <u>1513-e-rjup1-1_irb.111</u>  |
| 107 | FR-GRIF to CH-CERN      | LHCONE  | Monitoring      | No transfers found in FTS. NOTED is still running until Spectrum clears the alarm.  | Not provided |                           | 1513-e-rjup1-1_irb.111         |
| 108 | IT-INFN-T2 to CH-CERN   | LHCONE  |                 | The large data transfer is finished.                                                |              | 27.9                      | 1513-e-rjup1-1_irb.111         |
| 116 | UK-SouthGrid to CH-CERN | LHCONE  |                 | Spectrum generated an alarm: NOTED is inspecting FTS.                               | Not provided |                           | 1513-e-rjup1-1_irb.111         |
| 29  | AU-ATLAS to CH-CERN     | LHCOPN  |                 | The large data transfer is finished.                                                |              | 8.79                      | 1513-e-rjup1-1_irb.3530        |
| 30  | CH-CERN to CA-TRIUMF    | LHCOPN  | Action          | On-going SDN. FTS throughput [Gb/s]: 7.45                                           | Provided     | 31.5                      | 1513-e-rjup1-1_irb.2126        |
| 31  | CH-CERN to DE-KIT       | LHCOPN  |                 | The large data transfer is finished.                                                |              | 17.7                      | 1513-e-rjup1-1_irb.3530        |
| 32  | CH-CERN to DE-KIT       | LHCOPN  | Monitoring      | No transfers found in FTS. NOTED is still running until Spectrum clears the alarm.  | Not provided | 0                         | <u>1513-e-rjup1-1_irb.3530</u> |
| 36  | NL-T1 to CH-CERN        | LHCOPN  | Decision-making | An action on the link may be required: number of events: 1. Throughput [Gb/s]: 6.48 | Not provided |                           | <u>1513-e-rjup1-1_irb.3530</u> |
| 37  | DE-KIT to CH-CERN       | LHCOPN  | Running         | Spectrum generated an alarm: NOTED is inspecting FTS.                               | Not provided |                           | <u>1513-e-rjup1-1_irb.3530</u> |





## Package distribution



### Package distribution and installation

Available in PyPI: <u>https://pypi.org/project/noted-dev/</u>

| Search project                                                                 | s Q Help Sponsors Login Registe                                                                                                                       |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| noted-dev 1.1.                                                                 | 34                                                                                                                                                    |
| pip install noted-dev                                                          | r 🔎 Released: Aug 31, 2                                                                                                                               |
| NOTED: a framework to optimise r                                               | network traffic via the analysis of data from File Transfer Services                                                                                  |
| Navigation                                                                     | Project description                                                                                                                                   |
| Project description                                                            | NOTED: a framework to optimise network traffic via the analysis o                                                                                     |
| 3 Release history                                                              | data from File Transfer Services                                                                                                                      |
| 🛓 Download files                                                               | Copyright:                                                                                                                                            |
| Project links                                                                  | © Copyright 2022 CERN. This software is distributed under the terms of<br>the GNU General Public Licence version 3 (GPL Version 3), copied verbatim   |
| A Homepage                                                                     | in the file "LICENCE.txt". In applying this licence, CERN does not waive<br>the privileges and immunities granted to it by virtue of its status as an |
| Source                                                                         | Intergovernmental Organization or submit itself to any jurisdiction.                                                                                  |
|                                                                                | Compilation steps:                                                                                                                                    |
| Statistics                                                                     |                                                                                                                                                       |
| View statistics for this project via<br>Libraries.io 🗹, or by using our public | # Steps to install NOTED using a virtual environment:<br>ubuntu@pr1:-\$ pip3 install virtualenv                                                       |
| dataset on Google BigQuery 🗹                                                   | ubuntu@pr1:-\$ python3 -m venv-noted<br>ubuntu@pr1:-\$ venv-noted/bin/activate                                                                        |
|                                                                                | (venv-noted) ubuntu@pr1:-\$ python3 -m pip install noted-dev                                                                                          |
| Meta                                                                           | # In this step you will be ask to enter your authentication token<br># Write your configuration file, there is one example in noted/config/           |
| License: GNU General Public License                                            | (venv-noted) ubuntu@pr1:-\$ nano noted/config/config.yaml                                                                                             |
| v3 (GPLv3) (GPLv3 (GNU General<br>Public License)                              | <pre># Run NOTED # (venv-noted) ubuntu@pr1:-\$ noted noted/config/config.yaml [verbosity debug/info/warning</pre>                                     |

#### Common steps:

- # Create a virtual environment:
- \$ pip3 install virtualenv
- \$ python3 -m venv venv-noted
- $\$  . venv-noted/bin/activate

#### Ubuntu installation:

# Install noted-dev
(venv-noted) \$ python3 -m pip install noted-dev

- # Write your configuration file
- (venv-noted) \$ nano noted/config/config.yaml
- (venv-noted) \$ nano noted/config/config.yam]
- # Run NOTED

(venv-noted) \$ noted noted/config/config.yaml

#### CentOS installation:

```
# Download noted-dev.tar.gz
(venv-noted) $ wget url_pypi_repo_tar_gz
# Install noted-dev
(venv-noted) $ tar -xf noted-dev-1.1.62.tar.gz
(venv-noted) $ pip install noted-dev-1.1.62/
# Run NOTED
(venv-noted) $ noted noted/config/config.yaml
```



### Package distribution and installation

#### Available in Docker: <u>https://hub.docker.com/r/carmenmisa/noted-docker</u>

| recarmen                              | imisa/noted-docker                                                                                  |  |
|---------------------------------------|-----------------------------------------------------------------------------------------------------|--|
|                                       | carmenmisa/noted-docker ☆                                                                           |  |
|                                       | By carmenmisa • Updated 5 months ago                                                                |  |
|                                       | NOTED: a framework to optimise network traffic via the analysis of data from File Transfer Services |  |
|                                       | Image                                                                                               |  |
| Overview                              | Tags                                                                                                |  |
|                                       |                                                                                                     |  |
| NOTED:                                | a framework to optimise network traffic via the                                                     |  |
|                                       | a framework to optimise network traffic via the s of data from File Transfer Services               |  |
|                                       |                                                                                                     |  |
| analysis<br>Copyright:<br>• Copyright |                                                                                                     |  |

Docker Compilation steps:

# Download noted docker container
sh-3.2# docker pull carmenmisa/noted-docker

Intergovernmental Organization or submit itself to any jurisdiction

#### Installation:

- # Download noted docker container:
- \$ docker pull carmenmisa/noted-docker

```
# Run docker container:
$ docker run --detach --entrypoint /sbin/init
--network="host" --privileged --name noted controller
carmenmisa/noted-docker
```

```
# Copy your configuration file into the container:

& docker cp src/noted/config/config-example.yaml

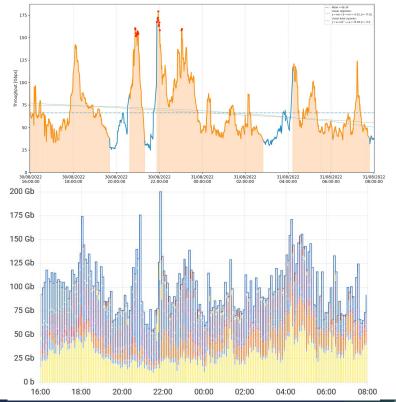
hoted controller:/app/noted/config
```

# Run commands in the container from outside: \$ docker exec noted controller noted -h \$ docker exec noted controller /app/src/noted/scripts/setup.sh mail

#### # Run NOTED

 $\$  docker exec noted controller noted config/config-example.yaml &





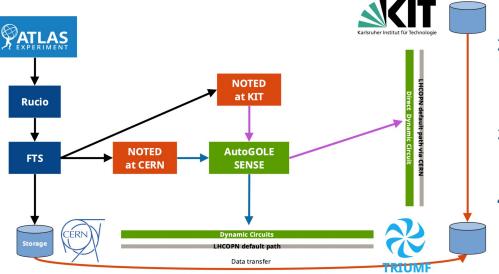

## NOTED demonstrations at SC22, SC23

(Provision of dynamic circuits by using SENSE as an SDN provider)



### Transfers of WLCG sites in LHCONE (31st of August 2022)



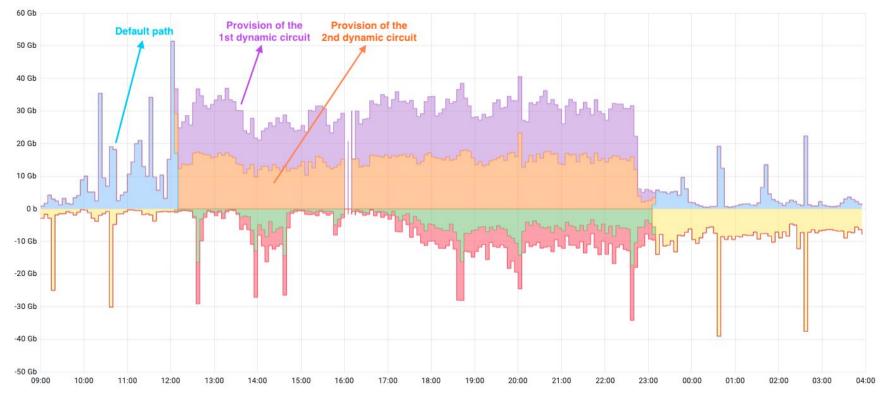

If throughput > 80 Gb/s → NOTED provides a dynamic circuit. When throughput < 40 Gb/s → NOTED cancels the dynamic circuit and the traffic is routed back to the default path.</li>

Observations of NOTED about the network utilisation correspond with the reported ones in Grafana by LHCONE/LHCOPN production routers.

Therefore, by inspecting FTS data transfers it is possible to get an understanding of the network usage and improve its performance by executing an action in the topology of the network.



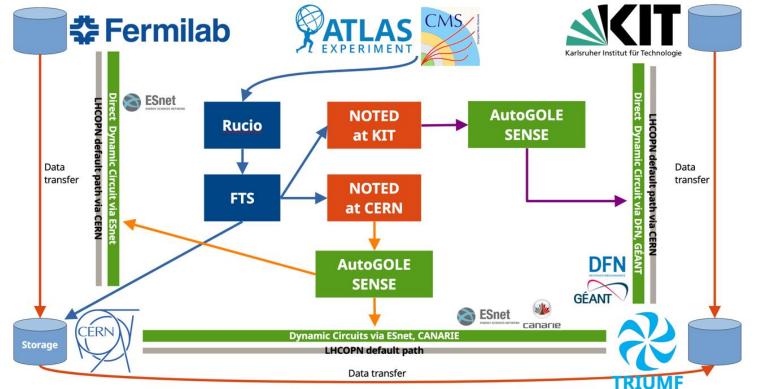
### NOTED demo at Super Computing 2022 (CUSTOM Version)




1. NOTED looks in FTS for large data transfers.

- When it detects a large data transfer → request a dynamic circuit by using the SENSE/AutoGOLE provisioning system.
- 3. LHCOPN border routers at CERN will route the data transfers over the new dynamic circuit.
- When the large data transfer is completed → release the dynamic circuit, the traffic is routed back to the LHCOPN production link.




### NOTED demo at Super Computing 2022 (CUSTOM Version)







### NOTED demo at Super Computing 2023 (LHCOPN, LHCONE and CUSTOM version)








### NOTED demo at Super Computing 2023 (LHCOPN, LHCONE and CUSTOM version)

#### □ Results of 14<sup>th</sup> November 2023.

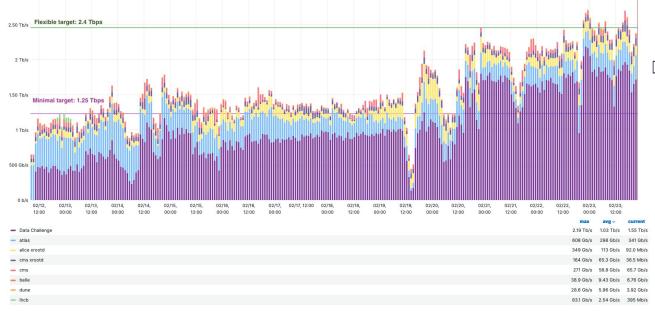
#### $\Box$ Data transfers between CH-CERN $\rightarrow$ CA-TRIUMF through SC23 booth.







## NOTED demonstrations at WLCG DC24

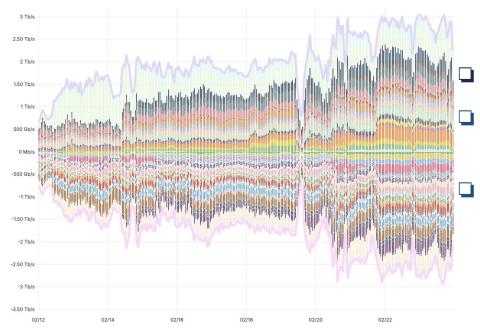

(Load balance between LHCONE and LHCOPN networks)



### WLCG Data Challenge 2024

□ Objective: demonstrate readiness for HL-LHC data rates by 2029.

Lots of efforts on coordinating the data challenges across multiple experiments in terms of design, procedures, monitoring, and injection.




- Target goal of WLCG Data Challenge 2024: 25% rate of HL-LHC
  - Peak at 3 Tbps
  - Reached 2.5 Tbps for ~9 hours
  - Flexible model: full mesh



### WLCG Data Challenge 2024

□ The backbone network exhibit great network performance. The bottlenecks were mostly due to storage configuration and storage hardware limitations.



- Useful exercise to find bottlenecks within sites
- Stress tests impacted on the network sites and overloaded storage endpoints
- Test scalability and push services to extreme rates above their normal operation
  - □ FTS ran 2x of its normal transfer rate



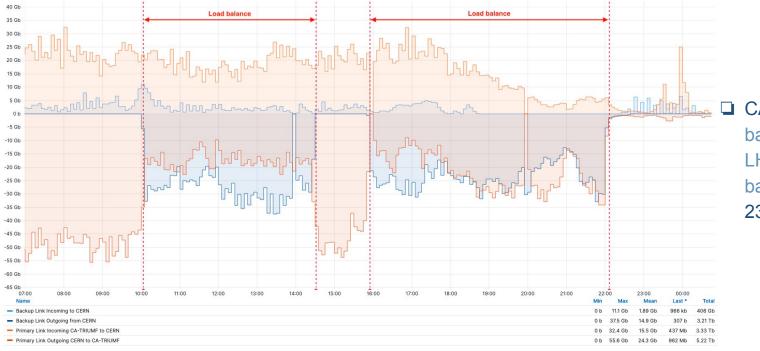

### NOTED demo at DC24 (LHCOPN, LHCONE version)



DE-KIT load balancing between LHCOPN and LHCONE (from 22<sup>nd</sup> to 23<sup>rd</sup> of February 2024)



### NOTED demo at DC24 (LHCOPN, LHCONE version)




ES-PIC load balancing between LHCOPN and LHCONE (from 21<sup>st</sup> to 23<sup>rd</sup> of February 2024)





### NOTED demo at DC24 (LHCOPN, LHCONE version)



CA-TRIUMF load balancing between LHCOPN and its backup link (from 21<sup>st</sup> to 23<sup>rd</sup> of February 2024)



### Conclusions and future work

Conclusions:

- NOTED can reduce duration of large data transfers and improve the efficient use of network resources. It has been demonstrated with production FTS transfers.
- NOTED makes decisions by watching and understanding the behaviour of transfer services. Transfer applications don't need any modification to work with NOTED.

Future work:

Improve decision-making as much as possible, predict the duration and traffic forecasting by using machine learning.





### **Publications**

- C. Busse-Grawitz, E. Martelli, M. Lassnig, A. Manzi, O. Keeble and T. Cass, <u>The NOTED software tool-set improves</u> <u>efficient network utilization for rucio data transfers via FTS</u>, CHEP 2020.
- □ J. Waczynska, E. Martelli, E. Karavakis and T. Cass, <u>NOTED: a framework to optimise network traffic via the</u> <u>analysis of data from file transfer services</u>, CHEP 2021.
- J. Waczynska, E. Martelli, S. Vallecorsa, E. Karavakis and T. Cass, <u>*Convolutional LSTM models to estimate network traffic*</u>, CHEP 2021.
- C. Misa-Moreira, E. Martelli and T. Cass, <u>NOTED: an intelligent network controller to improve the throughput of</u> <u>large data transfers in file transfer services by handling dynamic circuits</u>, CHEP 2023.
- C. Misa-Moreira and E. Martelli, *NOTED: a congestion driven network controller*, ISGC 2024.



## Thank you Any questions?

## RENDEZVOUS À RENNES Rennes, France | 10-14 JUNE 2024

carmen.misa.moreira@cern.ch



