

Token Based Authorisation

The key to the future of High Energy Physics computing

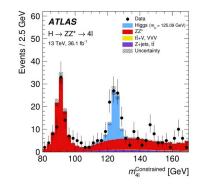
Berk Balci (CERN), Hannah Short (CERN), Thomas Dack (STFC-RAL), Maarten Litmaath (CERN)

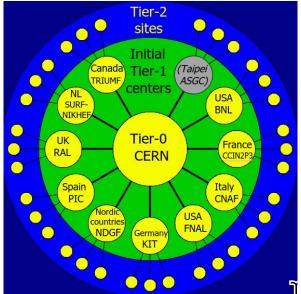
Co-funded by the European Union

Content

- CERN LHC
- WLCG
- WLCG AAI History
- Token Transition
- Deployment at CERN
- AARC
- WLCG Workflow and Challenges
- Performance
- EOSC

CERN - LHC





Worldwide LHC Computing Grid (WLCG)

• Large Hadron Collider (LHC) is the world's largest particle collider, famous for discovering the Higgs boson

- With great power comes great responsibility:
 - LHC experiments produce 200+ PetaByte / year
 - ~1 million computer cores are needed for scientists' analysis
 - Access needed for 12 000 physicist around the world
- With great responsibility comes great power WLCG -
 - 147 sites in 42 countries
 - 2+ ExaBytes of storage
 - 2+ million processing tasks (jobs) / day
- With great power comes again great responsibility IAM -
 - Identity management for granting access to scientists
 - Access management for LHC data and computing resources

WLCG AAI History

- From early 2000s authentication has been done with X.509 certificates and VOMS
- VOMS extends X.509 certificates by
 - Creating short-lived proxies of user certificates
 - And adding user roles and group memberships to them for authorization capability

Workflow:

- Users get personal X.509 certificates from IGTF-trusted Certificate Authorities
- WLCG sites and services trust IGTF certificates
- Each experiment uses VOMS to assign users to roles and groups
- Users use VOMS CLI tool to:
 - Create a short-lived proxy certificate
 - Add VOMS authorisation info
- These proxies carry both authentication and authorisation and are used to submit jobs and access data across the WLCG.

Token Transition - Theoretical Benefits

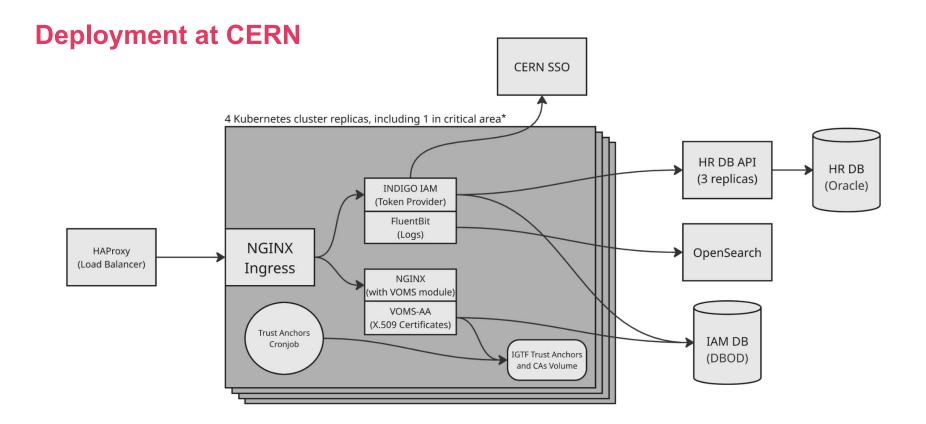
- Certificates
 - Hard to manage
 - Poor usability and portability
 - Poor interoperability with other research infrastructures
 - Weaker security
 - Long-lived proxies
 - Lacking access control granularity
- Tokens
 - Easier for users to manage
 - Minimal interaction required from end users
 - Tools deal with them under the hood
 - Reduced risk if compromised
 - Fine-grained access control
 - Typically short-lived
 - Designed for modern infrastructures
 - Increased interoperability with other infrastructures

Token Transition - Timeline

- 2017 WLCG Authorisation Working Group created to lead the token transition
- 2019 WLCG JWT Profile v1.0 released
- 2019 Decided to adopt INDIGO IAM
 - Developed by INFN, opensource
 - Has VOMS-AA for backwards compatibility
- 2020 First IAM instances in production
- 2024 Phaseout of the legacy VOMS services completed
- 2025 Migration to HA Kubernetes for better performance and reliability
- Now Already: ~25% of ATLAS file transfers use tokens
- 2025 Tokens begin production use for data access by computing jobs
- 2028 Completion of the X509 / VOMS phaseout

Deployment at CERN

- Multi-cluster HA deployment on Kubernetes
- Separate instances for each Virtual Organization:
 - 5 LHC experiments (ALICE, ATLAS, CMS, LHCb, MoEDAL)
 - 5 other experiments / projects (AMBER, CALICE, COMPASS, FCC, ILC)
 - 2 Operations (WLCG Ops, DTeam)

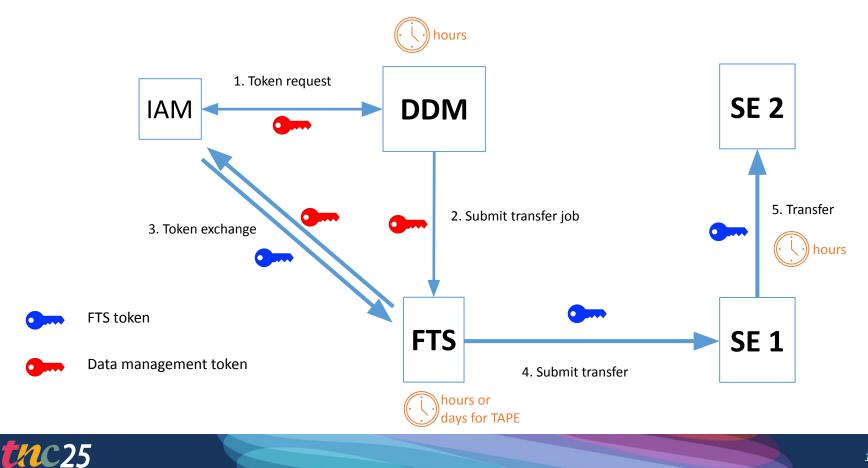


Apparatus for Meson and Baryon Experimental Research

* Only the 4 big LHC experiments have a 4th replica in the critical area

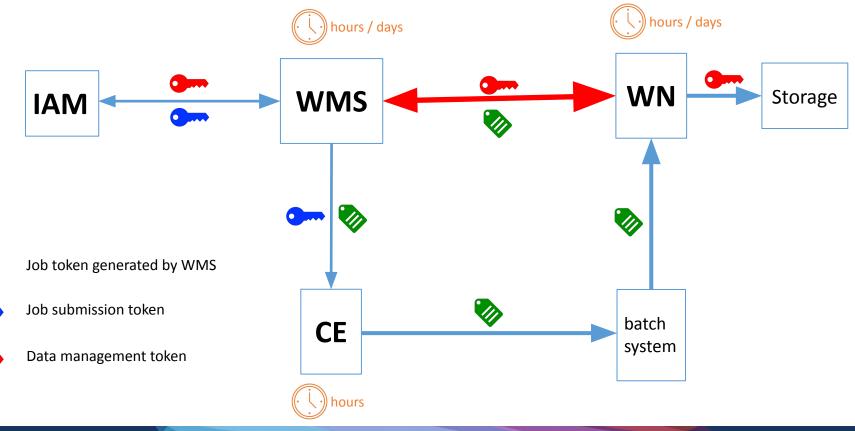
AARC (Authentication and Authorisation for Research and Collaboration)

- AARC provides guidelines and architectures to enable interoperable access across research infrastructures in Europe.
- CERN participates in the AARC TREE project
 - To stay aligned with evolving standards and best practices
 - To support interoperability among European research communities, which is essential for future collaborations requiring cross-community access to services.
- AARC BPA (Blueprint Architecture) is adopted as a reference model
- GUT (Grand Unified Token) profile work has been started to define a single token profile that aligns SciTokens, the WLCG token profile, and AARC guidelines.
- WLCG has unique requirements due to its scale
 - Full alignment with AARC can be challenging e.g., token lifetime, proxied token validation



Challenges

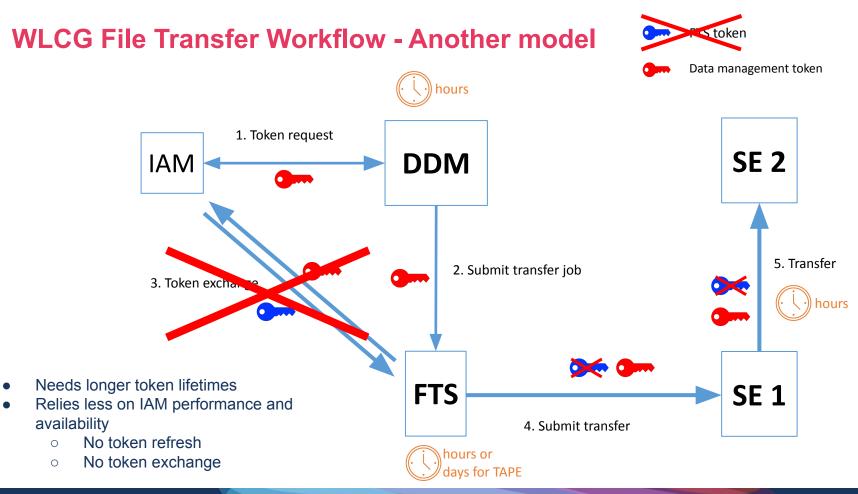
- While tokens offer many advantages, they also introduce new operational challenges that need to be addressed:
 - The risks associated with service centralisation
 - Token lifetimes and rates
 - Scope granularity
- These challenges are mainly due to the fact that most software was not built to run at the scale required by WLCG experiments, especially in certain workflow models.
 - O(5M) file transfers per day needing tokens for reading source file and writing destination file
 - O(millions) jobs per day needing tokens for reading input and uploading output data



WLCG File Transfer Workflow - One model

WLCG Job Submission Workflow

Centralisation — A New Single Point


- In the X.509 model, validation is decentralized by trusting IGTF CAs
- In the token model, validation relies on the central IAM server
- This introduces a single point of failure: if IAM is unavailable, token validation and therefore usage fails.
- Increased operational responsibility:
 - High availability
 - Redundancy
 - Monitoring
- Two methods of token validation:
 - Offline validation sites validating with the public key served by central IAM server
 - Allows to mitigate operational risks by sites caching the key and IAM serving the key in distributed manner by using static fallback
 - Online Validation Sites validating with the introspection endpoint of central IAM server
 - AARC recommends this to allow Proxied Token Introspection
 - This model leads to unpredictable and possibly unacceptable loads on the issuer at WLCG scale

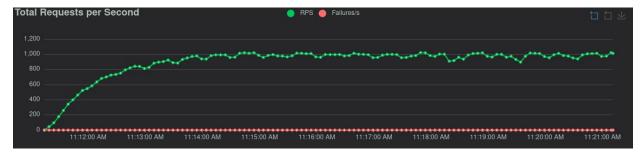
Token Lifetime — A Trade-Off

- X.509 proxies could last up to days.
- Tokens are short-lived by design reduces impact if leaked.
- But this creates more frequent calls to the IAM server for refresh.
 - Higher load on IAM
 - Stronger dependency on uptime and scalability
- Token lifetime can be tuned for balancing security and operations:
 - Long lifetimes weaken security and reduce interoperability
 - Short lifetimes improve security but increase operational pressure at WLCG scale
 - More load on IAM
 - Increased need of high availability
- AARC guidelines recommend short lifetimes for better interoperability and security.
 - But WLCG is a special case: large-scale, long-running jobs and background services may need adjusted lifetimes.

thc25

Scope Granularity — Limiting the Blast Radius

- X.509 proxies grant broad access full access to all VO storage.
 - If compromised, the impact could be massive.
- Tokens can be scoped narrowly:
 - Access to a specific dataset, or specific file, possibly only at specific services named as the audience
 - Specific action (read, write, modify)
- This reduces the impact of leaked tokens:
 - An attacker can't escalate privileges or move laterally
 - Better alignment with least-privilege principle
- With great power comes great responsibility:
 - Fine-grained tokens increases the number of tokens needed per activity
 - Increased performance demands on IAM (e.g. tokens/sec rate)
 - Stronger dependency on uptime and scalability

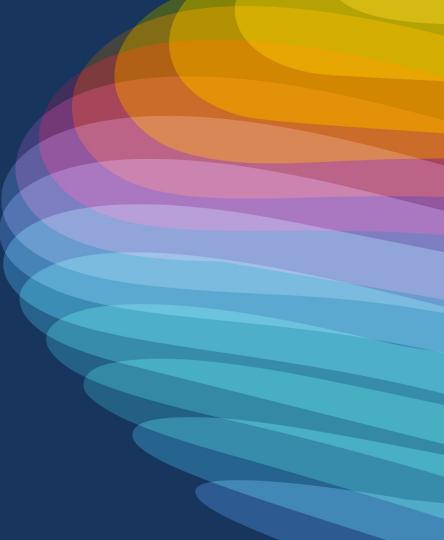


Performance

• Using single instance deployment on Openshift:

After migration to multi-cluster HA Kubernetes deployment:

- EOSC (European Open Science Cloud) aims to provide a federated environment for sharing research data and services across Europe
- CERN is planning to establish a CERN Node for EOSC to contribute to and benefit from the ecosystem
- EOSC AAI adopts AARC guidelines
 - Ensuring interoperability now prepares us for potential cross-community collaboration
 - If in the future WLCG IAM needs to serve as a community AAI within EOSC, it must comply with EOSC AAI
 - Further reinforces the relevance of aligning WLCG IAM with AARC guidelines


Thank you Any questions?

berk.balci@cern.ch

Co-funded by the European Union

