

Institute of Mathematics and Computer Science University of Latvia

On Quantum-Secure Layer 3 (IP) and Layer 2 Networking (and a bit of Layer 4)

Sergejs Kozlovičs, Rihards Balodis, Ināra Opmane TNC25 @ Brighton, UK June 11, 2025

NATIONAL QUANTUM COMMUNICATION INFRASTRUCTURE SYSTEMS AND NETWORKS

IMCS UL

Institute of Mathematics and Computer Science of University of Latvia

Founded: 1959

Now:

One of the largest and most influential research institutions in Latvia, EU

Formerly: The Latvia Computing Center

IMCS UL: Latvian/Baltic/European Internet

1990-ties:

• IMCS UL connects Latvia to the global Internet

August, 1990: first e-mail via a modem connection

October, 1992: Riga-Tallinn permanent link, 2400 bits/second

Before 2000-ties:

• IMCS UL actively cooperated with DANTE and NORDUNET, and partnered with the TEN34 (19 countries) and BaltNet projects

Since 2000-ties:

- IMCS UL has been a partner in all GÉANT projects GN1/2/3/4 Latnet/Sigmanet (part of IMCS UL) is a long-term GÉANT partner
- IMCS UL is is a partner now (we maintain a GÉANT node)

IMCS UL: Quantum Connections

2019, and 2020-ties:

• IMCS UL introduces the very first quantum communication Channels in Latvia

2019: the first in-lab quantum link

2021: the first metropolitan-scale link in Riga (33km), with partners

Since 2023:

• Conventional telecommunications industry partners (LVRTC, TET, ECO) turn towards quantum communications

Towards the Quantum Internet

Towards the Quantum Internet

The Quantum Internet can wait (entanglement distribution, distributed quantum computing...)

Quantum-secure key exchange cannot wait!

The Quantum Threat

Harvest Now, Decrypt Later

Most quantum-vulnerable algorithms should be:

- deprecated by 2030 and
- disallowed by 2035.

Our Motto: Fight Quantum with Quantum!

QRNGs: Quantum Random Number Generators

Each **QKD** device must have one.

QRNGs are essential for **PQC** algorithms:

- uniform bitstring sampling
- nonces
- seeds
- salt...

Quantum Random Number Generators utilize **inherently random** quantum processes (nuclear decay, photon behaviour, quantum vacuum fluctuations)

Our QRNG as a Service

We developed:

- QNRG as a Service (qrng.lumii.lv), 2022 the first QRNG service secured with PQC
- Linux kernel module (/dev/qrandom0 simulation)
- Windows DLL with Detours (non-open-source)
- D-Bus QRNG service
- OpenSSL3 provider

Our Motto: Fight Quantum with Quantum!

QKD vs. PQC

QKD	PQC
Perfect Forward Secrecy	Vulnerabilities can be found in the future Have to withstand the test of time
Information-Theoretically Secure	Not Information-Theoretically Secure
Non-breakable unless Quantum Mechanics are false	Believed to be quantum-safe Breakable with unlimited computational power
Expensive: devices and infrastructure needed	Operates on existing Internet infrastructure
Difficult to configure and maintain	Integrates well into existing software and Public Key Infrastructure (PKI)
No authentication	Provides Authentication and Encryption (AE)

The Four-Wheel Drive Engine Model (Hybrid!)

GÉANT + QKD: The Problem

Infinera DTN-X optical equipment over dark fibre

• Dark fibre is good for quantumness!

But: Optical Transport Network (OTN) switching...

• Optical **routing/switching is a problem**, since we cannot copy an unknown quantum state

GÉANT + QKD: The IDEA!

QKD as a Service

"WP6 Task 1 is currently reviewing network support requirements for Quantum Technology and quantum key distribution/exchange (**QKD/QKE**) technology in order to consider its applicability **as a service** for use by the GÉANT community."

[NETDEV: https://wiki.geant.org/display/NETDEV/QT]

Our Solution #1: the Backbone

Replace your cable with our backbone!

We offer a network segment (trunk) secured with quantum keys.

Our Solution #1: the Backbone

Can be implemented via:

- L2 encryptors with QKD support (Centauris)
- L3 routers/firewalls with QKD support (Cisco, Juniper)

certified devices! preferrably, with PQC support

Our Solution #2: Access via PQC VPN

User B VPN, PQC User A + VPN, PQC Encrypted data Encrypted data L2/L3 VPN: **VPN** server VPN server classical Backbone Local Area Network B **ILocal Area Network A** and PQC Encrypted messages Encryptor Encryptor Tacacs+ Tacacs+ Alice Bob Service channel QKD link 🔍 KMS server A **KMS server B**

One More Problem, Sorry \otimes

Trusted Nodes

Complex Topologies

In the LatQN project, we are implementing the "triangle" topology between different partners in Latvia

=> latqn.eu

(part of EuroQCI)

- Key Relay algorithms are needed
- We have to **sacrifice some QKD keys** for that (a precious resource!)

The research is supported by the European Union, project No. 101091559 "Development of experimental quantum communication infrastructure in Latvia (LATQN)".

EuroQCI = European QKD "Internet"

How to provide QKD as a Service for end users without L2/L3 hardware or VPN software?

Our Solution #3: TLS (Layer 4) Integration

Our Solution #3: TLS (Layer 4) Integration

"Quantum KEM" implementations:

- Direct ETSI QKD GS 014
- Direct CISCO SKIP
- Our original double-secure Butterfly Protocol

Our Double-Secure Butterfly Protocol

TLS with QKD keys <u>qkd.lumii.lv</u> USER 1 **USER 2** QKD as a Service **Butterfly Protocol** TLSv1.3 QaaS QaaS integration KME KME QKD Bob **QKD** Alice

via our

with

Butterfly Protocol as KEM in TLSv1.3

Please do not take technology for granted!

CA self-signed PQC certificate

Further Projects

Lat-LitQN:

- Riga (LV) Kaunas (LT) Vilnius (LT)
- with the ability to connect to Poland

Quantum Shield for Data:

- Quantum-Secure Access to the Cloud
- Quantum-Secure Backups for Data

Satellites could help establish long-distance QKD without the need for trusted nodes.

Entanglement-based protocols can be utilised (although quantum memory is required in some cases).

We and the satellites:

- During 1997-1999, IMCS UL operated an international satellite channel between IMCS UL (LV) and Crawford Communications (US)
- During the Lat-LitQN project, we are going to do research on QKD via satellites

Huttner, B., Alléaume, R., Diamanti, E. et al. Long-range QKD without trusted nodes is not possible with current technology. npj Quantum Inf 8, 108 (2022). https://doi.org/10.1038/s41534-022-00613-4

Thank you Any questions?

sergejs.kozlovics@lumii.lv imcs@lumii.lv

Co-funded by the European Union

