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Laser Communications (Lasercom)

Fiber-optic technology + Wireless technology




Advantages of Lasercom

over Microwave
O High data rate (>1 Gbps)

O Enormous bandwidth (>100 THz)

d Unlicensed spectrum allocation

O Low power consumption (e.g., ~1/2 of microwave™)
O Small antenna size (e.g., ~1/10 of microwave™)

d Lightweight (e.g., ~1/2 of microwave®)

1 No side lobes

O Good security

*H. Kaushal and G. Kaddoum, “Optical communication in space: challenges and mitigation techniques,” IEEE Comm. Sur. Tut., 2017.



Laser Satellite-Airborne Networks for
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Aspect Previous Studies / Existing Literature Our Study
Communication Type Ground-to-ground, satellite-to-ground, Satellite-to-airborne lasercom
inter-airborne, or inter-satellite lasercom
Communication Model Point-to-point using a single laser beam Point-to-multipoint using multiple
laser beams
Innovation Conventional setups with limited scalability Novel concept enabling

simultaneous connectivity for
multiple airborne base stations



Our Contribution to Lasercom Study
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Aspect Previous Studies / Existing Literature Our Study
Channel  Considered specific channel factors individually Providing a novel channel model that

Modelling - Pointing errors and angle-of-arrival fluctuations  integrates all these factors for laser satellite-

(inter-airborne) airborne communications
— Atmospheric turbulence and angle-of-arrival
fluctuations (satellite-to-ground)



Our Contribution to Lasercom Study
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Aspect Previous Studies / Existing Literature

Backhaul Network

Studied resource allocation in
conventional RF-based wireless backhaul

networks
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Providing data frame allocation

— Ensuring QoS
— Maintaining latency and throughput

fairness

schemes for laser satellite-airborne
backhauling:

— Minimizing transmitted power



Frame Allocation
Scheme 1: Basic Rate Adaptation (BR)
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Adaptive Data Rate Power Management

Under BR, the data rate is determined by adjusting BR maintains a constant power level, which can lead
the modulation order according to predefined channel to suboptimal power use, especially for platforms with
thresholds, enabling the system to adapt to fading weaker signals or greater distance from the satellite.

without modifying power.



Frame Allocation
Scheme 2: Power-Constrained Rate
Adaptation (PR)
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Adaptive Data Rate Power Management

PR further refines data rate adaptation by including PR sets power constraints that

power constraints to meet specific outage probability ~ balance energy consumption while maintaining

and average requested data rate, thus balancing data specific performance metrics. This approach ensures

rate and power consumption. efficient power distribution without compromising the
quality of service for each platform.



Frame Allocation
Scheme 3: Dynamic Rate/Power
Adaptation (DPR)
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Adaptive Data Rate Power Management

DPR dynamically adjusts both data rate and power all DPR is the most power-efficient, dynamically

ocation, enabling the most flexible response to adjusting power in real-time alongside modulation.
changing channel conditions. By optimizing This dual adaptation helps conserve energy while
modulation and power in real-time, DPR maintains ensuring strong, reliable signals, especially under

the highest levels of data transmission reliability with ~ adverse conditions, such as atmospheric interference
minimized power usage. or significant platform distance.
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Average Transmitted Power (dBm)

Performance Comparison
(Transmitted Power)
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Performance Comparison Summary

Fairness
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QoS Requirements



Summary

“ Our satellite-airborne backhauling concept using multiple laser beams
offers a novel solution to meet growing demands for high-speed,
reliable connectivity.

¢ The approach supports BSG/6G, loT, and emergency communications,
enhancing future network capabilities.

*» With the support of project funding, we developed a comprehensive
theoretical framework for multi-beam laser satellite-airborne
backhauling.

o Channel modeling that incorporates key environmental factors
o Efficient data allocation strategies for multiple beams
o Analytical expressions for essential performance metrics
*» This framework lays a foundation for the analysis and design of future

communication networks integrating satellite and airborne components.
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U Established in September 2021
-~ U R&D

+ Communications
« Earth Observation
+ Atrtificial Intelligence
U Educational Programmes
* MSc Satellite Systems Engineering

* MSc Artificial Intelligence and Space
Technology

U Collaborations

+ 30 academic and research institutes
over Europe through the European
Satellite Network of Experts

https://www.bradford.ac.uk/ei/research-and-business/bradford-renduchintala-centre/
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