

Inn (YOUR_IDEA_HERE) vation Programme 2024

Laser Satellite-Airborne Networks for Global Connectivity

TNC25

11 June 2025

Vuong Mai

Bradford-Renduchintala Centre for Space AI, University of Bradford, UK

Laser Communications (Lasercom)

Fiber-optic technology + Wireless technology

Advantages of Lasercom over Microwave

- □ High data rate (>1 Gbps)
- □ Enormous bandwidth (>100 THz)
- Unlicensed spectrum allocation
- □ Low power consumption (e.g., ~1/2 of microwave*)
- □ Small antenna size (e.g., ~1/10 of microwave*)
- □ Lightweight (e.g., ~1/2 of microwave*)
- No side lobes
- Good security

*H. Kaushal and G. Kaddoum, "Optical communication in space: challenges and mitigation techniques," *IEEE Comm. Sur. Tut.*, 2017.

Laser Satellite-Airborne Networks for Global Connectivity

Project Innovation

Aspect	Previous Studies / Existing Literature	Our Study
Communication Type	Ground-to-ground, satellite-to-ground, inter-airborne, or inter-satellite lasercom	Satellite-to-airborne lasercom
Communication Model	Point-to-point using a single laser beam	Point-to-multipoint using multiple laser beams
Innovation	Conventional setups with limited scalability	Novel concept enabling simultaneous connectivity for multiple airborne base stations

Our Contribution to Lasercom Study

Aspect	Previous Studies / Existing Literature	Our Study
Channel	Considered specific channel factors individually	Providing a novel channel model that
Modelling	 Pointing errors and angle-of-arrival fluctuations 	integrates all these factors for laser satellite-
	(inter-airborne)	airborne communications
	 Atmospheric turbulence and angle-of-arrival 	
	fluctuations (satellite-to-ground)	

Our Contribution to Lasercom Study

Aspect	Previous Studies / Existing Literature	Our Study
Backhaul Network	Studied resource allocation in conventional RF-based wireless backhaul networks	Providing data frame allocation schemes for laser satellite-airborne backhauling: – Ensuring QoS – Maintaining latency and throughput fairness – Minimizing transmitted power

Frame Allocation Scheme 1: Basic Rate Adaptation (BR)

Adaptive Data Rate

Under BR, the data rate is determined by adjusting the modulation order according to predefined channel thresholds, enabling the system to adapt to fading without modifying power.

Power Management

BR maintains a constant power level, which can lead to suboptimal power use, especially for platforms with weaker signals or greater distance from the satellite.

Frame Allocation Scheme 2: Power-Constrained Rate Adaptation (PR)

Adaptive Data Rate

PR further refines data rate adaptation by including power constraints to meet specific outage probability and average requested data rate, thus balancing data rate and power consumption.

Power Management

PR sets power constraints that balance energy consumption while maintaining specific performance metrics. This approach ensures efficient power distribution without compromising the quality of service for each platform.

Frame Allocation Scheme 3: Dynamic Rate/Power Adaptation (DPR)

Adaptive Data Rate

DPR dynamically adjusts both data rate and power all ocation, enabling the most flexible response to changing channel conditions. By optimizing modulation and power in real-time, DPR maintains the highest levels of data transmission reliability with minimized power usage.

Power Management

DPR is the most power-efficient, dynamically adjusting power in real-time alongside modulation. This dual adaptation helps conserve energy while ensuring strong, reliable signals, especially under adverse conditions, such as atmospheric interference or significant platform distance.

Performance Comparison (Throughput)

Performance Comparison (Transmitted Power)

Performance Comparison Summary

Summary

- Our satellite-airborne backhauling concept using multiple laser beams offers a novel solution to meet growing demands for high-speed, reliable connectivity.
- The approach supports B5G/6G, IoT, and emergency communications, enhancing future network capabilities.
- With the support of project funding, we developed a comprehensive theoretical framework for multi-beam laser satellite-airborne backhauling.
 - Channel modeling that incorporates key environmental factors
 - Efficient data allocation strategies for multiple beams
 - Analytical expressions for essential performance metrics
- This framework lays a foundation for the analysis and design of future communication networks integrating satellite and airborne components.

Centre for Space AI

The Bradford-Renduchintala

Vuong Mai

v.mai@bradford.ac.uk https://www.bradford.ac.uk/staff/vmai/

Optical Beam Control and Steering

□ Mitigation of Channel Impairments

Research on Lasercom

Bradford-Renduchintala Centre for Space AI

Established in September 2021

R&D

The Bradford-Renduchintala Centre for Space Al

- Communications
- Earth Observation
- Artificial Intelligence
- Educational Programmes
 - MSc Satellite Systems Engineering
 - MSc Artificial Intelligence and Space Technology
- Collaborations
 - 30 academic and research institutes over Europe through the European Satellite Network of Experts

https://www.bradford.ac.uk/ei/research-and-business/bradford-renduchintala-centre/